SPring-8/LEPS2 で探るクォークやハドロンの クラスター

Study quark/hadron clusters at SPring-8/LEPS2

A02班

M. Niiyama (Kyoto Sangyo U.)

Super Photon Ring 8 GeV (SPring-8)

2

Backward-Compton Scattered Photon

- 8 GeV electrons in SPring-8
 - + 351nm Ar laser (3.5eV) 8W→ ~ 2.4 GeV photon
 - + 266nm Solid+BBO (4.6eV) 1W→ ~2.9 GeV photon
- Laser Power ~6 W (351nm) \rightarrow Photon Flux ~1 Mcps (2.4 GeV)
- Eγ measured by tagging a recoil electron → Eγ>1.5 GeV, ΔEγ ~10
 MeV
- Laser linear polarization 95-100% \Rightarrow Highly polarized γ beam

New experimental hutch

Clusters in the hadron physics

Clusters in the hadron physics

Cluster in hadron physics

Cluster in hadron physics

Normal hadrons

Pentaquark Θ^+

Theoretical Prediction (Z. Phys.A 359, 305(1997))

- 1. Baryon with strangeness(S)=+1, charge(Q)=+1 minimal quark contents: ududs
- **2. Light Mass**: M(Θ⁺) ~1530 MeV (quark model: 1700~1800 MeV)

3. Narrow Width: $\Gamma < 1$ MeV [exp.+theor.]

Counter evidence from J-lab/CLAS

Events/0.00625 GeV/c²

photon beam and deuteron target

Θ^+ search at LEPS and CLAS

Θ⁺ search at LEPS and CLAS

Solenoid spectrometer

Magnet (BNL-E949) B=1 T $\Delta p/p \sim 1-5\%$ for $\theta > 7$ deg detectors for photons, charged particles

 3σ K/ π /p separation < 2.7 GeV

Solenoid spectrometer

- Sideway tracker
- Time Projection Chamber (TPC)
 - R=655 mm, 24 layer
 - $\sigma_{r\phi}=150 \ \mu m, \ \sigma_z=2 \ mm$
- Forward tracker
 - 4 drift chambers (DC)
 - 6 plane
 - $\sigma_{xy}=150 \ \mu m$
- Time-of-flight
 - Resistive Plate Chamber (RPC)
 - $\Delta t=70 \text{ ps}$
- Aerogel Cherenkov counters
 - n=1.03, 1.05
- Barrel γ counter
 - Lead plastic sandwich 14.3X₀

Main background

$$\begin{array}{ccc} \gamma d \to \phi X \\ \phi \to K^+ K^- \end{array}$$

No $\boldsymbol{\phi}$ meson background

$$\begin{array}{l} \gamma d \rightarrow \Lambda(1520) K_s^0 p \\ \Lambda(1520) \rightarrow K^- p \end{array}$$

Colorless clusters

Λ(1405) **Kaonic nuclei**

$\Lambda(1405)$

V.K. Magas, E. Oset and A. Ramos, PRL 95

- 30 MeV below KN threshold
- Hadronic molecule candidate
 - $\overline{K}N$, $\pi\Sigma$ comonents
- Two resonance poles are predicted
- Heavier mass pole couples mainly to KN

$\Lambda(1405)$

- 30 MeV below KN threshold
- Hadronic molecule candidate
 - KN, $\pi\Sigma$ comonents
- Two resonance poles are predicted
- Heavier mass pole couples mainly to KN

1.55

M_I, GeV

1.45

1.5

1.4

0 1.3

1.35

Hyperon photoproduction with K*(892)

Parity filter with linearly polarized photon

Hyperon photoproduction with K*(892)

Parity filter with linearly polarized photon

K*(890) Λ (1405) photoproduction with linearly polarized photon

Kaonic nuclei

If $\Lambda(1405)$ is K^{bar} N molecule, K⁻pp system can be strongly bound state.

Kaonic nuclei

Status of detector development

- Detector commissioning started last year
- 4th drift chamber is under construction
- We aim to start physics data taking next FY!

Summary

- Colored cluster
 - Diquarks in pentaquark Θ^+
- Colorless cluster
 - $\Lambda(1405)$, Kaonic nuclei
- LEPS2 γ beam line for hadron physics.
 - Highly polarized photon beam up to 3 GeV with high intensity.
- 4π detector with solenoid magnet which covers from very forward to backward
 - Simultaneous detection of Photon and charged particle.
- Commissioning run started last year
- Physics data taking ~next fiscal year.

Backup

Collaboration list

- Osaka U. RCNP
 - M. Yosoi, T. Nakano, T. Hotta, S.Y. Ryu, S. Ajimura, Y. Sada, K. Mizutani, Y. Ohashi, R. Yamamoto
- Tohoku U. ELPH
 - H. Ohnishi, N. Muramatsu, A. Tokiyasu, C. Yoshida
- Kyoto U.
 - R. Kobayakawa, K. Watanabe, E. Umezaki, H. Furuta
- Gifu U.
 - M. Sumihama
- Taiwan Academia Sinica
 - W. C. Chang,
- Kyoto Sangyo U.
 - M. Niiyama

$\gamma d \rightarrow K^- \Theta^+ p \rightarrow K^- K^+ pn$ reaction

Most of ϕ events are excluded with M(K⁺K⁻) cut. Spectator protons can not escape from the target

2013-2014 run with large start counter

43

The present status of ⊕⁺ analysis

- *p/n* separation has been improved with the large STC
- Simulate the mass distributions considering the possible physical processes (Θ^+ , $\Lambda(1520)$, ϕ , non-resonant (scalar), non-resonant(vector))
- Simultaneously fit both $M(NK^{-})$ and $M(NK^{+})$ for *p*-untagged events
 - ($\Lambda(1520)$, ϕ are fixed. $\leftarrow p$ -tagged events analysis)

1st objective: Θ^+ search at

LEPS2 solenoid spectrometer

Multi-purpose large acceptance detector for fixed target exp.

 No Fermi motion correction
 No φ and non-resonant K⁺K⁻ backg Mass resolution of Θ⁺: ~6 MeV 45

(~11 MeV at LEPS)

'n

 $\gamma + n' \rightarrow K^{-} + \Theta^{+}$

Κ

 π

Parity filter with linearly polarized photon $\varepsilon_{\gamma} \perp K\pi \rightarrow$ unnatural parity exchange (K) $\varepsilon_{\gamma} \parallel K\pi \rightarrow$ natural parity exchange (K*, κ)

Measure difference of line s \rightarrow determine the higher pole $_{46}^{46}$

Parity filter w/ linearly polarized photon

 $\phi \rightarrow \mathsf{K}^+\mathsf{K}^-$

Decay Plane $//\gamma$ natural parity exchange $(-1)^{J}$ (Pomeron, 0+ glueball, scalar mesons)

 \rightarrow Act as a parity-filter in t-channel exchange!!

Physics motivation for LEPS2 (III) Kaonic nuclei search

If $\Lambda(1405)$ is K^{bar} N molecule, K⁻pp system can be strongly bound state.

Θ^+ Search at LEPS2

γ

No Fermi motion correction. No φ background.

'n

γ

In order to measure angular dependence of production rate in large angle region, we extend our detector acceptance up to CLAS acceptance.

A large acceptance and better resolution detector are necessary.

prs invariant mass

K missing mass

►K

ble)

Solenoid spectrometer

- Sideway tracker
- Time Projection Chamber (TPC)
 - R=655 mm, 24 layer
 - $\sigma_{r\phi}=150 \ \mu m, \ \sigma_z=2 \ mm$
- Forward tracker
 - 4 drift chambers (DC)
 - 6 plane
 - $\sigma_{xy} = 150 \ \mu m$
- Time-of-flight
 - Resistive Plate Chamber (RPC)
 - $\Delta t=70 \text{ ps}$
- Aerogel Cherenkov counters
 - n=1.03, 1.05
- Barrel γ counter
 - Lead plastic sandwich 14.3X₀

Invariant mass resolution

Strangeness tagging $\gamma + n \rightarrow \overline{K} + \Theta^+$

$$\begin{array}{c} P \quad K^{0} \\ \rightarrow \pi^{+} \pi^{-} \end{array}$$

Invariant Mass measurement

80 ch/plane x 6 = 480 ch

Specification of TPC

Spatial resolution of prototype TPC

- Prototype TPC with same wire-pad configurations.
- σ_x =150 µm is required to reconstruct Θ + \rightarrow K⁰_s p with 6 MeV resolution.

sense

wire

θ

Spatial resolution of prototype TPC

У

Х

- Prototype TPC with same wire-pad configurations.
- σ_x =150 µm is required to reconstruct Θ + \rightarrow K⁰_s p with 6 MeV resolution.

sense

wire

Н

2m Barrel RPC

Goal: 3+3σ separation for pi/K below 1 GeV/c.
(K- associated with Theta+)
70 ps time resolution is required.

 \sim 70 ps is achieved over 2m range using near side view.

Aerogel Cherenkov counter K/ π separation above 1 GeV/c. 50 (\times) m beam 30 6.5 PMT cm PMT 6.5 cm TPC Air light 10 guide 20 cm **SSD** target 14 cm n=1.03 700 20 cm 16 cm ΓΟΡ DC's n=1.05 K/π 4 cm cm

57

Aerogel Cherenkov counter

We tested with electron beam and estimate Cherenkov light from pions @ 1 GeV/c. 99.6% efficiency is achieved for pion with 3.5% over veto rate for kaon. Test with pion beam is ongoing.

Good e beam emittance in SP8

Two types of exotic hadrons 4, 5, 6 quarks in hadron Haronic molecule Possible colored cluster Colorless cluster

Spatial size	Compact (<~1 fm)	Wide (~ a few fm)
Example	Not established yet	X(3872): $\overline{D^{*0}} D^0$

Laser injection system

4 lasers in the laser hutch

2013.1.27 first beam(1.5-2.4 GeV~4Mcps with a single 24W laser)

