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% BEC with internal degrees of freedom

Internal degrees of freedom

« Scalar BEC: spin state is fixed (magnetic trap)

« Spinor BEC: spin degrees of freedom are librated (optical trap)

* hyperfine spin 87Rb, 23Na,
S ra L, 41K F=1,2
85 =
S S : electron spin ]33Rb cE unstable -
L : electron orbital Cs F=3, 4
il I : nuclear spin >2Cr F=3(5=3,1=0)
4He*’ 40Ca’
174Yp, 176Yh F=0(5=0,/=0)
All spin states can be trapped in an optical trap

- N

Novel physics in quantum fluids with many internal degrees of freedom



87Rb high-field seeker Mg low-field seeker

F=2 -2 -1 0 +1 +2
F=1 +1 0 -1

-Magnetic sublevels can be coherently coupled, and their
populations can be controlled.

-Scattering lengths can be controlled via Feshbach Resonance.
*Rich variety of non-equilibrium dynamics are expected.
relaxation in an isolated quantum system

guantum fluctuations : spin-nematic squeezing

guantum turbulence, quantum vortex dynamics,

phase separation, interface of different components

spin dynamics, etc...



% State manipulation

Energy level diagram of 8’Rb at 20 G Time evolution and imaging

me 2 #0042
Pl F=1and2
O?\§rf F=2 I
Microwave 6.8GHz ¢ P
+rf 2.0 MHz I Stern-Gerlach £
2-photon transition initial state method (SG) S/ N TOF
|
F=1 v |

Transmission

0 1
7 mE 1

18ms for F =1




Collisions in Spin-2 spinor BEC

— elastic : spin-exchange collision — inelastic : hyper-fine changing collision —

before after before after

12,m0) + [2,m5) = |2 mg) + |F,my) | |12 +12m2) = [1ms) + |F,my)
my + My = Mg+ My ex.

12,0)+|2,0) > |1, +1) +|2,—1)
—{two-body loss

Impossible: |2,2)+|2,2) - |1,m3) + |F,m,)

[ex- 2,0)+|2,0) & |2,+1>+|2,—1>]

coherent evolution between mg m; dependent loss
S. Tojo, et al., PRA 80, 042704 (2009).

P

spontaneous symmetry breaking and self-organized
coherence formation in a dissipative gquantum system



Experimental techniques

—— State-of-the-art spin manipulation technique ——

@. High fidelity initial-state preparation

. Stern-Gerlach measurement with precise spin rotation
by application of rf pulses
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High fidelity initial-state preparation

Experimental procedure Before microwave irradiation

F =3

F=2

=1 g
m_ I @ with resonant light

bias mag. field : 200mG

D : 6.834264565 GHz Q
@ : 6.834542658 GHz —

resonant. light® : 780.24 nm Pure initial state

microwave




spin rotation by rf pulse

If magnetic field is sufficiently low

Spin state rotation

Zeeman shift is linear. resonant rf pulse
me 2 1 0 -1 -2 t
'.'t resonant rf pulse
| ._,_,
! B,
1_ Quantization axis along

bias magnetic field

After rf pulse




Spin rotation by rf pulse @B,=34.4 mG

MT

FORT

BIAS field 5

Rf pulse

Gradient field

probe

Initial state

o

Me=+2

Spin z-component
+2
<Sz> = Z 777/FN771,F /Nt.otal
mep——2

N : Mg atom numer

N, : total atom number

_\

/

0 20

mg. T=0 8 us| 16 us 24 us 32 us 40 us 48 us 56 us
+2 €« - | |

40 60 80 100 120
rf time (us)



spin rotation by rf pulse

Application of two wt /2 pulses

/2 /2
100us
rf pulse /4\\ /4\ tirDe
sin(wfi) sin(wit+e)

m=0

O 0.2 04 06 08 1.0 1.2 O 02 04 06 08 10 1.2
¢@ (1T units)



Stern-Gerlach measurement with spin rotation by rf pulse

Application of /2 pulse before Stern-Gerlach sepation

\ ¢

Spin states are rotated by 90 degree.

\ 4

We can effectively rotate the measurement axis.

without 7t/2 rf with 7t/2 rf



Experimental procedures

Trap frequency

axial: 644z  Bias magnetic field @ Creation of BEC in F=2, m=-2 state

radial: 180Hz
Rf pulse

Crossed
FORT

B,=200mG

microwave
'\\\

number of atoms: 3xX10°

@ Preparation of F=2, m:=0 BEC

p
@ m_ population measurement

After time evolution of T, 4, Stern-
Gerlach measurement is performed
with and without /2 rf pulse

T

a) Without rf hold
(@) < tirDe
Measurement axis is parallel to bias
/2
(b) With rf T hoia
/’ time

Measurement axis is perpendicular to bias

G

.




Evolution of m=0 state : measurement axis parallel to mag. field

Mixed initial state (w/o light) Pure initial state (with light)
gl.i* AmF+2. S I_...+ AmF+2
= nak ‘me==%1 | = A a ‘me==%1 |
c_:,d 0'8. o mi—o c_; 0'8- o mi
S 0.6/ : : o 0.6
o | . { # Q. .
goq gefitid  ror 4 L }H :
507 « ) AHH“A S0z pigriires
x | é% a4 P % Aaxasdidy

Okh_4 4 N . otaalla ia . - :
0 20 40 60
0 5 100 150
Thoig (MS) 0 Tholg (MS)
 ratio of m=01s 0.9 @0Oms * Almost pure m=0
* rapid decrease even @10ms * remains in mg=0 up to 30ms

m=0 Is a quasi-stable state



Evolution of m=0 state : measurement axis parallel to mag. field

Pure initial state (with light)

0 ' ' ' ' q
%'_‘ A m=%2 |
TholdzomS % 0.8 * :mF:il i
. S ! T ® : m-=0
0.6 ]
o |
Lo}
T4 |
e
Tho1g=100ms— o ]
0 "
0

* Almost pure m=0
* remains in mg=0 up to 30ms

m-=0 IS a quasi-stable state



Evolution of m=0 state : meas. axis perpendicular to mag. field

- /2
fpulse < T o /’ /2 fime
-I-|’10|d:0mS Th0|d:lOOmS
mg -2 -1 0 1 2 mg -2 -1 0) 1 2

¢ @ )

3 1 3
10), = \/;|2>x +§|O>x +\/;| — 2)x
subscript refers to quantization axis -

|mg) = |2, mp)

Results were different for each measurement
under the same experimental condition



Evolution of m=0 state : meas. axis perpendicular to mag. field

/2
Thofd
fpulse < /4\ time
m| Spin state before /2 Tho1e=100ms

Mg -2 -1 0

irradiation

Results were different for each
measurement under same
experimental condition




Evolution of m=0 state : meas. axis perpendicular to mag. field

/2
fpulse < T o /4\ time
m| Spin state before /2 Tho1e=100ms

Mg -2 -1 0

irradiation

(Sz) = i mr N

Ntotal

mF=—2

Expectation value of z-component of spin (S,)



Time evolution of m=0 state

TO
< hold J/}\ tlnle
@:BEC , _ .'i t.:
_O:thermals ° I B
: ° - o ® : !
N o 8 o *® g e o
@oaesaﬁgg“u :
i ® : b : : :
2 - ®
Nm -1 ’o ® .
s= ) mep= N\ AR
mrp=-2 ota °
2y s 100
Thoig (MS)

Random values in a
range +2~-2

Larmor precession of almost full stretched state

along the bias magnetic field at 100ms



Mechanism for spontaneous magnetization

1. generation of m= £+ 1 and m= + 2 states by spin-exchange
collision
2. m- dependent loss by hyperfine-changing collision

— formation of phase relations between magnetic sub-levels
such that the superposed state is spin-polarized
perpendicular to the bias field: a spin-polarized state is
robust against two-body inelastic loss

(hyperfine-changing collision) 0124;%2@ C,
c _ 4mh* Ta,-10a, +3a,
" m 7
Note that the magnetic ground state Ferro-
of F=2 8’Rb BEC is cyclic or polar. magnetic “Rb |

polar ”




Mechanism for spontaneous magnetization

1. generation of m= £+ 1 and m= + 2 states by spin-exchange
collision
2. m- dependent loss by hyperfine-changing collision

— spin-polarized state perpendicular to the bias field

spontaneous symmetry breaking and self-organized
coherence formation in a dissipative quantum system

S | /o \x
Usually, dissipation causes decoherence. In this case, dissipation makes

coherence. May give an insight on quantum dynamics in a dissipative
system, i.e., why photosynthesis is efficient.
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"'symmetric around z-axis"' “larmor precession around z-axis"



Coherence formation assisted by spin-dependent particle dissipation

A Initial state

N TR
d !

1
, )— —x &
N\

C Without dissipation




Evolution of the magnetization : numerical simulation

20 p ' | ' I T A
1.5 F
“a10F
0.5 F
Without quadratic Zeeman effect
0.0 = : ' : ’ : =
0 50 100 150

T} 014 (MS)



» Bose-Einstein condensate of neutral atoms is a meso-scale quantum
system with great controllability and an testing ground for studying
non-equilibrium quantum dynamics.

» Many internal degree of freedom of multi-component BEC will offer
a variety of non-equilibrium phenomena.

» Spontaneous magnetization in dissipative spinor BEC

* We examined the effect of naturally occurring dissipation by
using a Bose-Einstein condensate of spin-2 8’Rb atoms.

* Through experiments and numerical simulations, we show that
the spin-dependent particle dissipation gives rise to the
coherence formation.

« The result shows that dissipation in nature can contribute to the
formation of the quantum coherence.




