核力の媒質効果と3体核力を含む核力の精密化

Tomotsugu Wakasa Department of Physics, Kyushu University

B02:エキゾチック核子多体系で紐解く物質の階層構造

原子核層の「サブ階層・多中性子クラスター」と階層をつなぐ鍵を握る「3体核力」の研究 多中性子クラスターの研究(中村・近藤)

3体核力の研究(関口・若狭)⇒「**力」の研究**

- ・核子多体系における「多体力(3体核力)」「多体効果(核媒質効果)」
 - ・多体系固有の力の理解の深化
 ⇒ 階層構造形成のメカニズム解明へ
 - ・ 2つの視点(アプローチ)
 ⇒ 第一原理的・統一的理解、普遍性
- ・核子自身がクラスター(色荷の中和)

 であることに起因
 - ・ハドロン層と原子核層を結ぶ
 ⇒ クォークから核力を理解する

Bridge nuclear/hadron hierarchies & Deeper understanding of nuclear system/hierarchy

Three nucleon force effects in few-nucleon systems

Current status and planning research

Frontiers & challenges for the future

Chiral expansion of 3NF

- N²LO (Q³): 2 LECs: ³H B.E. and N-d c.s. at 70 MeV \rightarrow Could not explain exp. data
- N³LO (Q⁴): parameter-free, but large N⁴LO contributions by Δ is expected
- N⁴LO (Q⁵): new 10 LECs
 - Need high-precision N-d scattering data in wide energy region→T=1/2 only
 - Exp. data for T=3/2 3NF are highly required

p+³He scattering and T=3/2 3NFs. M. Viviani et al., Phys. Rev. Lett. 111, 172302 (2013).

Now, it is interesting to study at higher energies for pol. observables with high accuracy!

p-³He A_y data at 70 MeV

New exp. at 100 MeV is now in progress at RCNP

³He analyzing power exp./data for p-³He by Tohoku group (Sekiguchi-Gr.)

Investigation of nuclear medium effects on NN interactions

Exclusive nucleon knockout reactions

Exclusive nucleon knockout reaction provides a direct means to study s.p. properties

(e,e'p)

- Distortion effect is less serious
- Interaction is well known

(p,pN) [(p,2p) and (p,pn)] = *NN scattering in nuclear medium*

- Large cross section is suited for systematic studies
- Spin degrees of freedom provide useful information
- Inverse-kinematics exp. is feasible

(p,pN) can be used also for assessing "in-medium" NN force (Spin obs. are less sensitive to initial and final state interactions)

The reaction mechanism is simple enough to deduce the medium effect on NN force.

Estimation of effective mean density for (p,pN)

Triple differential c.s. of (p,pN) is expressed as $\sigma = |T|^2 \quad T = \int_0^\infty D(R) \, dR \qquad D(R) \equiv \int \chi_2^*(R)\chi_1^*(R)\phi(R)\chi_0(R)R^2 d\Omega$ Transition matrix density, $\delta^{\text{Tr}}(R)$, can be defined as $\delta_{\text{real}}^{\text{Tr}}(R) \equiv \text{Re}\left[\frac{D(R)}{\int_0^\infty D(R) dR}\right] \sigma \longrightarrow \int_0^\infty \delta_{\text{real}}^{\text{Tr}}(R) dR = \sigma \qquad \begin{array}{c} \text{contribution} \\ \text{to } \sigma \text{ at } R \end{array}$ $\left(\delta_{\text{imag}}^{\text{Tr}}(R) \equiv \text{Im}\left[\frac{D(R)}{\int_0^\infty D(R) dR}\right] \sigma \longrightarrow \int_0^\infty \delta_{\text{imag}}^{\text{Tr}}(R) dR = 0 \end{array}\right)$

Then, effective mean density, $\bar{
ho}$, can be introduced as

$$\operatorname{Re}\bar{\rho} = \frac{\int_{0}^{\infty}\rho(R)\delta_{\mathrm{real}}^{\mathrm{Tr}}(R)dR}{\int_{0}^{\infty}\delta_{\mathrm{real}}^{\mathrm{Tr}}(R)dR} \left(\operatorname{In most cases, }\operatorname{Re}\bar{\rho} \gg \operatorname{Im}\bar{\rho}\right) \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)} \frac{1^{2}C(1s_{1/2})}{\delta\rho} \xrightarrow{\rho(R)} \xrightarrow{\rho(R)}$$

We can control ar
ho by selecting target nuclei and orbits from 0 to \sim 40% of ho_0

A_y reduction for p-p in nuclear medium

T.Noro et al., PRC 72, 041602 (2005). A_y of (p,2p) [p-p in nuclear medium] for s/p-shell nuclei at 392 MeV TW, K.Ogata, and T.Noro, PPNP 96, 32 (2017). 0.4 Density dependence **PWIA DWIA** Monotonic decrease of the density g-matrix 0.3 Distortion effect is small Conventional g-matrix ³He reduction ¹H ²н could not explain this trend 0.2 ³He ⁴He ⁴He • Exception of ³He/⁴He A_{y} ⁸Li 7Li Too small for applying °Be 0.1 ¹⁰B concept of nuclear density? ^{11}R ¹²C ¹⁶0 0.0 -0.10.1 0.2 0.0 0.3 $\overline{\rho} / \rho_0$

Ay of p-p in nuclear medium are reduced as a function of density.
Distortion effect and conventional medium effect (g-matrix) could NOT explain.
→ How about n-p in nuclear medium (isospin dependence) ?

Extension to (p,pn) measurements

Y. Yamada, Ph.D. thesis, Kyushu University (2010). TW, K.Ogata, and T.Noro, PPNP 96, 32 (2017).

(p,2p), (p,pn), and (p,np) data are measured with a same setup.

Y. Yamada, Ph.D. thesis, Kyushu University (2010). TW, K.Ogata, and T.Noro, PPNP 96, 32 (2017).

Ay data for 1s_{1/2} knockout (p,pN) at k_{recoil}=0

Nuclear medium effects on 2NF depend on isospin (charge) transfer

* Suggest the modification in isoscalar meson exchange \rightarrow Can we model these effects?

Medium effects on A_y for (p,np) and (p,2p)

TW et al., Phys. Rev. C 96, 014604 (2017).

Isospin and density dependences of nuclear medium effects are reasonably explained. → How about other spin observables ?

Failure of Brown-Rho scaling conjecture

T. Noro et al., Phys. Rev. C 77, 044604 (2008). Calculations based on Brown-Rho scaling conjecture for ¹²C(p,2p)

• Significant medium effects are predicted especially $D_{nn} \rightarrow$ *Inconsistent with exp. data*

Investigation of nuclear medium effects on NN interactions

Experimental determination of in-medium 2NF

A.K.Kerman, H.McManus, and R.M.Thaler, Ann. Phys. 8, 551 (1959).

For free NN scattering, the c.s. I and polarization transfer D_{ij} are defined as:

$$I \equiv rac{d\sigma}{d\Omega} = rac{1}{4} ext{Tr}[MM^{\dagger}] \quad D_{ij} = rac{ ext{Tr}[M\sigma_j M^{\dagger}\sigma_i]}{ ext{Tr}[MM^{\dagger}]}$$

where M is the NN scattering amplitudes expressed as:

 $M(q) = A + B\sigma_{1\hat{n}}\sigma_{2\hat{n}} + C(\sigma_{1\hat{n}} + \sigma_{2\hat{n}}) + E\sigma_{1\hat{q}}\sigma_{2\hat{q}} + F\sigma_{1\hat{p}}\sigma_{2\hat{p}}$

We neglect D-term for simplicity.

- 5 *complex* parameters
- 9 real parameters and 1 common phase → Need 9 independent observables
 - We had only 6 observables (I, A_y=P, D_{qq}, D_{nn}, D_{pp}, D_{pq}=-D_{qp})

We can determine *in-medium 2NF (scatt. amps) experimentally* by measuring K_{ij} for (p,pN)

Experimental setup for K_{ij}

最近の反応理論の進展

3体核力を取り込んだ、ノックアウト反応の理論予測

Theoretical progress for (p,2p) with 3NF

3NF effects are small for outer orbits \Rightarrow Medium modifications for 2NF are small at low density (ρ =0.13 ρ_0)

Theoretical progress for (p,2p) with 3NF

3NF effects are large for a deeply-bound orbit \Rightarrow Medium modifications for 2NF are significant at high density (ρ =0.42 ρ_0)

Calculations for polarization observables (Ay, etc) are now in progress.

Recent progress for spin-isospin residual interaction

Key parameter, g'_{NN}, for π -condensation from GTGR in ¹³²Sn

Nuclear force as residual interaction

J. Yasuda(Kyushu), M. Sasano, R.G.T. Zegers, TW et al., PRL 121, 132501 (2018).

Gamow-Teller response of the doubly-magic neutron-rich nucleus ¹³²Sn

 $\pi + \rho + g'$ interaction as a spin-isospin residual interaction

- $g'_{NN} = 0.68 \pm 0.07$ for ¹³²Sn from GTGR
 - Consistent with 0.6 for ⁹⁰Zr and 0.64 for ²⁰⁸Pb
- Constant g'_{NN} between (N-Z)/A = 0.11-0.24 (¹³²Sn)
- Pion condensation can occur for $\sim 2\rho_0$ (heavy NS) if constant g's hold for N/Z \gg 1

Summary and Outlook

Bridge nuclear/hadron hierarchies & Deeper understanding of nuclear system/hierarchy

