新学術「量子クラスターで読み解く物質の階層構造」キックオフシンポジウム November 20 (2018) (TIT)

Pair formation and quantum many-body phenomena in strongly interacting ultracold atomic gases

Yoji Ohashi (C02)

Department of Physics, Keio University, Japan

<u>Collaborators</u>: M. Soumita, D. Kagamihara, K. Manabe, R. Sato

Introduction: Background and our strategy

Four on-going topics

Compressibility: inter-cluster interaction

Shear viscosity: KSS conjecture

Bose-Fermi mixture: hetero-cluster

• OFR: non-(⁶Li, ⁴⁰K) superfluid Fermi atomic gas

Summary

Hierarchical structure of Matter in our Universe

Hierarchical structure of Matter in our Universe

Superfluid: A possible approach to our Hierarchical world

- Construction of quantitatively reliable many-body theories
- Understanding universal pairing (clustering) properties BCS-BEC crossover region
- Discussions with other "班" in this 新学術領域

"BCS-BEC Crossover" Phase diagram

Pseudogap phenomenon in the BCS-BEC crossover region

Normal-state density of states

Photoemission spectrum

1.5

2

Isothermal compressibility κ_T may be a promising quantity to clarify the inter-cluster (pair) interaction.

$$H = \sum_{p,\sigma} (\varepsilon_p - \mu) c_{p\sigma}^{\dagger} c_{p\sigma} - U \sum_{p,p',q} c_{p+\frac{q}{2}\uparrow}^{\dagger} c_{-p+\frac{q}{2}\downarrow}^{\dagger} c_{-p'+\frac{q}{2}\downarrow} c_{p'+\frac{q}{2}\uparrow}$$

$$G(p, i\omega_n) = \frac{1}{i\omega_n - \varepsilon_p + \mu - \Sigma(p, i\omega_n)}$$

$$\sum_{i=1}^{I} \sum_{p=1}^{I} \sum_{i=1}^{I} \sum_{j=1}^{I} \sum_{i=1}^{I} \sum_{i=1}^{I} \sum_{i=1}^{I} \sum_{j=1}^{I} \sum_{i=1}^{I} \sum_{i=1}^{I} \sum_{i=1}^{I} \sum_{j=1}^{I} \sum_{i=1}^{I} \sum_{j=1}^{I} \sum_{i=1}^{I} \sum_{j=1}^{I} \sum_{i=1}^{I} \sum_{i=1$$

 $i\omega_n - \varepsilon_p + \mu - \Sigma(p, i\omega_n)$

air pair

Quantitative comparison with experiment (unitarity limit)

Quantitative comparison with experiment (unitarity limit)

SCTMA can quantitatively explain the compressibility observed in a unitary Fermi gas.

Calculated compressibility in the crossover region (SCTMA)

The inter-cluster interaction makes the compressibility converge in the whole BCS-BEC crossover region.

Kovtan-Son-Starinets (KSS) conjecture (PRL 95 111601 (2005)

C. Cao, et al., Science 331 58 (2011)

$$(\eta/s)_{\rm min} \sim 2.7\hbar/4\pi k_B$$

- Quark Gluon Plasma $(\eta/s)_{
 m min}\sim 2\hbar/4\pi k_{
 m B}$
- Superfluid ⁴He $(\eta/s)_{
 m min}\sim 5\hbar/4\pi k_{
 m B}$
- N₂ (room temp.,1atm) $(\eta/s) \sim 3.3 \times 10^3 \hbar/4\pi k_B$

Shear viscosity in the BCS-BEC crossover region

perturbation <----

$$H' = rac{1}{i\omega} rac{\partial u_x}{\partial y} \int d^3 m{r} \Pi_{xy} \, ,$$

Stress-tensor operator

$$\hat{\Pi}_{xy} = \sum_{\boldsymbol{p},\sigma} \frac{p_x p_y}{m} c^{\dagger}_{\boldsymbol{p},\sigma} c_{\boldsymbol{p},\sigma}$$

shear viscosity

$$u_{x}(y,t) = e^{i\omega t}u_{x}(y)$$

$$y$$

$$f(x) = \int u_{xy} du_{x}$$

$$\Pi_{xy} = -\eta \frac{\partial u_{x}}{\partial y}$$

$$\eta = -\lim_{\omega \to 0} \frac{\mathrm{Im}\Xi(\omega)}{\omega}$$
$$\Xi(\omega) = -i \int d\mathbf{r} dt e^{i\omega t} \theta(t) \left\langle [\hat{\Pi}^{xy}(\mathbf{r}, t), \hat{\Pi}^{xy}(\mathbf{0}, 0)] \right\rangle$$

We evaluate the shear viscosity including the self-energy and vertex corrections in a consistent manner, within the framework of SCTMA.

Shear viscosity in the BCS-BEC crossover region

Calculated η /s in the BCS-BEC crossover region

Where is minimum η/s ?

E. Elliott et al. Phys. Rev. Lett. 113 020406 (2014)

Bose-Fermi mixture with a Feshbach resonance

Tuning a pairing interaction is also possible in a Bose-Fermi mixture.

Variation of Bose-Fermi mixture

Fermi-Bose mixture	$T/T_{\rm F}$	N_{f}	$N_{\rm b}$	$\omega_{\rm f}/\omega_{\rm b}$	Reference	Year	Institution
⁶ Li- ⁷ Li	0.25	$1.4 imes 10^5$	$2.2 imes 10^4$	1.08	[21]	2001	Rice University
⁶ Li- ⁷ Li	0.2 ± 0.1	4×10^3	10^{4}	1.08	[22]	2001	ENS, Paris
⁴⁰ K- ⁸⁷ Rb	0.30	104	2×10^4	1.47	[26]	2002	LENS, Florence
⁶ Li- ²³ Na	$0.05\substack{+0.03 \\ -0.02}$	$3 imes 10^7$	$6 imes 10^6$	1.94	[90]	2003	MIT
⁴⁰ K- ⁸⁷ Rb	0.20	104	$2.5 imes 10^5$	1.47	[92]	2004	JILA, Boulder
${}^{40}K - {}^{87}Rb$	0.32	$6 imes 10^5$	$4 imes 10^5$	1.47	[95]	2005	ETH, Zurich
³ He ⁻⁴ He	0.45	10 ⁶	10 ⁶	1.15	[108]	2006	Free University of Amsterdam
$^{40}K - ^{87}Rb$	0.1	$9 imes 10^5$	BDL	1.47	[93]	2006	Institüt für Laserphysik, Hamburg
⁴⁰ K- ⁸⁷ Rb	0.9	2×10^4	BDL	1.47	[96]	2007	University of Toronto
⁶ Li- ⁸⁷ Rb	0.90	$1.4 imes 10^5$	$4 imes 10^6$	2.5	[102]	2008	University of Tübingen
¹⁷³ Yb- ¹⁷⁴ Yb	0.3	104	$3 imes 10^4$	1.00	[115]	2009	Kyoto University
⁶ Li- ¹⁷⁴ Yb	0.08 ± 0.01	$2.5 imes 10^4$	$1.5 imes 10^4$	3.90	[118]	2011	Kyoto University
⁶ Li- ¹⁷⁴ Yb	0.3	$1.2 imes 10^4$	$2.3 imes 10^4$	8.20	[119]	2011	University of Washington, Seattle
$^{40}K - ^{87}Rb$	0.3	$2.0 imes 10^6$	105	1.47	[98]	2011	Shanxi University
²³ Na- ⁴⁰ K	0.35	$3.0 imes 10^5$	106		[124]	2012	MIT
$^{84}{ m Sr}-^{87}{ m Sr}$	0.30 ± 0.05	$2.0 imes 10^4$	105	0.98	[117]	2012	Universität Innsbruck
⁶ Li- ⁷ Li	0.03	$2.5 imes 10^5$	$2.5 imes 10^4$	1.08	[88]	2015	ENS, Paris
⁸⁷ Rb- ¹⁷¹ Yb	0.16 ± 0.02	$2.4 imes 10^5$	$3.5 imes 10^5$	2.00	[123]	2015	University of Maryland–NIST
⁶ Li- ⁴¹ K	0.07	$1.5 imes 10^6$	$1.8 imes 10^5$	2.23	[125]	2016	USTC Hefei and Shanghai

Strong-coupling theory involving hetero-pairing fluctuations

$$H_{\rm BF} = \sum_{p} \xi_{p}^{\rm B} b_{p}^{\dagger} b_{p} + \sum_{p} \xi_{p}^{\rm F} f_{p}^{\dagger} f_{p} - U_{\rm BF} \sum_{p,p',q} b_{p+q/2}^{\dagger} f_{-p+q/2}^{\dagger} f_{p'+q/2} b_{-p'+q/2} d_{-p'+q/2} d_{-p$$

Fermi single-particle excitations (T>Tc)

Superconductivity of single-metal elements

1																	18
1 H 1.0079	2											13	14	15	16	17	2 He 4.0026
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 A1 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 C1 51.996	25 Mn 54.938	2.6 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 K1 83.798
37 Rb 85.468	38 S1 87.62	39 Y 88.906	40 Z1 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ea 137.33	57-71 *	72 Hf 178,49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 F1 (223)	88 Ra (226)	89-103 #	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn	¹¹³ Nh	114 Fl	115 Mc	116 Lv	Ts	118 Og
	* Lanthanide series		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97
# Actinide series		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

atomosphere

Fermi gas superfluids

Only two kinds of Fermi atomic gases exhibit the superfluid transition.

1	_																18
1 H 1.0079	2		Mag	gnet	ic F	esh	bac	h re	son	ance	e	13	14	15	16	17	2 He 4.0026
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Ng 2 4.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 C1 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Bt 79.904	36 Kr 83.798
37 Rb 85.468	38 S1 87.62	39 Y 88.906	40 Z1 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 F1 (223)	88 Ra (226)	89-103 #	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn	¹¹³ Nh	114 Fl	115 Mc	116 Lv	Ts	118 Og
	чк Т – м 1 1	k-wide			1		-				1		1	1	1		
* Lanthanide series		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
# Actinide series		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Fermi gas superfluids

Only two kinds of Fermi atomic gases exhibit the superfluid transition.

1	_																18
1 H 1.0079	2		Mag	gnet	ic F	esh	bac	h re	sona	ance	e	13	14	15	16	17	2 He 4.0026
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 2 4.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 C1 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 S1 87.62	39 Y 88.906	40 Z1 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	Ts	118 Og
																-	
	* Lanthanide series		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 E1 167.26	69 Tre 169.93	70 Yb 173.04	71 Lu 174.97
	# Actinide series		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Orbital Feshbach resonance

Limitation of broad Magnetic Feshbach resonance pairing mehanism

Active electron spin is essentially needed in this pairing mechanism.

New resonance in ¹⁷³Yb Fermi gas: Orbital Feshbach resonance

Active electron spin is essentially needed in this pairing mechanism.

New resonance in ¹⁷³Yb Fermi gas: Orbital Feshbach resonance

An external magnetic field B induces v_e and v_g .

New resonance in ¹⁷³Yb Fermi gas: Orbital Feshbach resonance

An external magnetic field B induces v_e and v_g .

¹⁷³Yb Fermi gas with OFR = "two-band" Fermi system

Calculated Tc and particle fraction in the closed channel

Single-particle excitations at Tc in the crossover region

Summary (C02)

Summary (C02)

