Hadron Interactions from Lattice QCD

Takumi Doi (RIKEN Nishina Center / iTHEMS)

Final State Interactions in HIC-exp [A01]

Interactions to form Exotic hadrons [A02, B01]

Hyperon interactions [B01]

3-body interactions [B02]

Numerical simulator ←→ cold-atom simulator [C01, C02]

Hyperon interactions → Hypernuclei [D01] (Hiyama's talk)

HAL QCD method

NBS wave func.

 $\psi_{NBS}(ec{r})$ $\simeq A_k \sin(kr - l\pi/2 + \delta_l(k))/(kr)$

Lattice QCD

- Y. Akahoshi, S. Aoki, T. Miyamato, K. Sasaki (YITP)
- T. Aoyama (KEK)
- T. Doi, T. M. Doi, S. Gongyo, T. Hatsuda, T. Iritani (RIKEN)
- F. Etminan (Univ. of Birjand)
- Y. Ikeda, N. Ishii, K. Murano, H. Nemura (RCNP)
- T. Inoue (Nihon Univ.)

The Challenge in multi-baryons on the lattice

T. Iritani et al. arXiv: 1805.02365 T. Iritani, EPJ Web Conf. 175(2018)05008

- <u>Baryon Forces from LQCD</u>
- Exponentially better S/N
- <u>Coupled channel systems</u>

Ishii-Aoki-Hatsuda (2007)

Ishii et al. (2012)

Aoki et al. (2011,13)

[Theory] = HAL QCD method

Baryon Interactions at Physical Point

[Hardware]

- = K-computer [10PFlops]
 - + FX100 [1PFlops] @ RIKEN + HA-PACS [1PFlops] @ Tsukuba
- HPCI Field 5 "Origin of Matter and Universe"

[Software]

- = Unified Contraction Algorithm
- Exponential speedup Doi-Endres (2013)

 - $^{3}\mathrm{H}/^{3}\mathrm{He}$: $\times 192$
 - ${}^{4}\text{He}$: $\times 20736$
 - ⁸Be : $\times 10^{11}$

Classification of baryon interactions

SU(3)-flavor

What is **universal**, and what is **individual** in baryon forces ?

Repulsive core ←→ quark-Pauli + OGE

M.Oka et al., NPA464(1987)700

T.Inoue et al. (HAL.), PTP124(2010)591

$\Sigma N (I=3/2)$ potential in ${}^{3}S_{1} - {}^{3}D_{1}$

[H. Nemura]

Phase shift $\overline{\delta}_0$

←→ J-PARC Exp (B01班)

• Σ^{-} in neutron star ?

(400conf x 4rot x 96src)

[Application to dense matter] Hyperon single-particle potential

- obtained by using YN,YY S-wave forces form QCD.
- Results are compatible with experimental suggestion.

$$U_{\Lambda}^{\text{Exp}}(0) \simeq -30, \quad U_{\Xi}(0)^{\text{Exp}} \simeq -10?, \quad U_{\Sigma}^{\text{Exp}}(0) \ge +20? \quad \text{[MeV]}$$

attraction attraction small repulsion 49

[T. Inoue] ¹¹

Hyperon onset in NSM (just for fun)

- Result indicate Λ, Σ⁻, Ξ⁻ appear around ρ = 3.0 4.0 ρ₀
- However,
 - YN^{L=1,2...} and YNN force could be important at high density.
 - We may need to compare with more sop

[T. Inoue]

12

<u>Nf=2, mπ=0.76-1.1 GeV</u>

<u>Nf=2+1, m π =0.51 GeV</u>

Magnitude of 3NF is similar for all masses Range of 3NF seems to become longer for $m\pi = 0.51$ GeV

←→ RIBF Exp (B02班)

Fate of exotic candidate Zc(3900)[ud^{bar}cc^{bar}] -- coupled channel study -- [Y. Ikeda]

peak in π^{+/-}J/ψ invariant mass (minimal quark content cc^{bar} ud^{bar} <--> tetraquark candidate)

M ~ 3900, Γ ~ 60 MeV (Breit-Wigner) --> just above D^{bar}D* threshold

(JP=1+ <--> couple to s-wave meson-meson continuum)

★ structure of Z_c(3900) studied by models

Fate of exotic candidate Zc(3900)[ud^{bar}cc^{bar}] -- coupled channel study -- [Y. Ikeda]

3.2

3.4

3.6

 $M_{\pi J/\psi}$ (GeV)

3.8

4.0

~ x100

Post K computer (Exascale)

R&D for better comput. framework

- LapH method, all-to-all method, ...
- Partial wave decomposition method

Dominant origin of systematic/statistical errors
→ contaminations of inelastic states

The challenge is to use the hadron-hadron operator which couples to elastic states

Study of general (exotic) resonances

The challenge is the calculation of quark-antiquark creation/annihilation diagrams (disconnected diagram)

The use of all source to all sink quark propagator could meet these challenges

Resonances w/ disconnected diagrams

I=1 pipi scattering

D. Kawai (HAL Coll.) EPJ Web Conf. 175(2018)05007

We have to calculate all-to-all correlators to get NBS wave functions.

➡ It needs a lot of computational cost and time.

→ Distillation method (LapH)

Peardon et al. (2009)

Efficient use of "low-mode" quark propagator Operator is effectively smeared

Resonant behavior is observed !

2+1 clover, m(pi)=0.41GeV

→ Work w/ all-to-all method in progress (Y. Akahoshi)

R&D for better comput. framework

4000 400 Partial wave decomposition method 300 3000 200 MeV] 100 multi-valued in r 2000 0 V(r) -100 1000 → Contaminations of -200 0.5 1.5 0 2.5 higher partial waves ? 0 0 2 3 6 7 A₁⁺ -irrep in cubic group r [fm] **←→** L=0, 4, ... We have cubic cubic trans. more info ! trans. Same r but not cubic trans.

→ Partial wave decomposition

R&D for better comput. framework

Partial wave decomposition method

C. W. Misner, Class. Quantum Grav. 21 (2004) S243-S247

Sophisticated decomposition w/ binning of "r"

The method works well !

N.B. a part of the improvement (average of V(r) for the same "r") was already taken into account even in previous studies

[T. Miyamoto] 20

Final State Interactions in HIC-exp [A01]

Interactions to form Exotic hadrons [A02, B01]

Hyperon interactions [B01]

3-body interactions [B02]

Numerical simulator ←→ cold-atom simulator [C01, C02]

Hyperon interactions → Hypernuclei [D01] (Hiyama's talk)

Backup Slides

Tcc, Tcs states w/ good diquark

•Strong Attraction, but no bound state for $m\pi > 400 MeV$ •More attractive for lighter quark mass

 $\ensuremath{\cdot} T_{bb}$ has a bound state if we combine m_b & potential in Tcc

Y. Ikeda et al. (HAL QCD), PLB729(2014)85

Spin and Isospin dependence of NE potentials

Effective NE potentials are plotted. (tensor potential is involved)

Kenji Sasaki (YITP Kyoto University) for HAL QCD Collaboration

[K. Sasaki]