原子核のクラスター構造の実証に向けた取り組み

新学術領域研究 「量子クラスターで読み解く物質の階層構造」 キッフオフシンポジウム

Kazuyuki Ogata

RCNP, Osaka University / Osaka City University

Clustering (spatial correlation) in nuclei

"Direct" means the relation between the observables and the clustering structure is transparent.

Knockout reaction

The (p,2p) reaction: a probe for s.p. structure

T. Wakasa, KO, and T. Noro, PPNP96, 32 (2017).

The surface α

Y. Kanada-En'yo, T. Suhara, and Y. Taniguchi, PTEP 2014, 073D02.

 \checkmark The surface α amplitude, rather than S_{α} , will be the measure of the α clustering.

The masking function D(R) for ²⁰Ne(p,pα) at 392 MeV

 α -cluster WF multiplied by D, i.e., the surface a distribution, is probed.

- \checkmark The nuclear interior region is masked, as desired.
- ✓ If you use S_{α} , you implicitly mention something on the nuclear interior region.

$^{120}Sn(p,p\alpha)^{116}Cd$

K. Yoshida, K. Minomo, and KO, PRC 94, 044604 (2016).

- $(p,p\alpha)$ has a strong selectivity for the position of α inside a nucleus.
- Experimental data measured at RCNP will appear soon.

di-neutron correlation

Breakup of a 2n halo nucleus Ρ n С A

Can we probe the structure of P via breakup observables?

Our starting point

Y. Kikuchi, T. Myo, K. Kato, and K. Ikeda, PRC 87, 034606 (2013).

Note: E1 sum rule is free from the FSI.

Decay mode of the 2₁⁺ state of ⁶He

Dynamical description of both formation and decay of the 2_1^+ state of ⁶He Y. Kikuchi, Matsumoto, Minomo, O, PRC **88**, 021602 (2013).

Di-neutron in the 2¹⁺ of ⁶He

Y. Kikuchi, Matsumoto, Minomo, O, PRC 88, 021602 (2013).

- ✓ The peak at lower ε_{n-n} suggests the di-neutron decay due to the Fin. State Int. (FSI).
- ✓ The peak at higher ε_{n-n} peak indicates the back-to-back decay.

 \implies Decay of a di-neutron in the 2₁⁺ state not due to the FSI.

Proving²n correlation in ⁶He via (p,pn) process

Y. Kikuchi, KO, Y. Kubota, M. Sasano, and T. Uesaka, PTEP 2016, 103D03 (2016).

deuteron-like correlation

Experimental fact

C. Samanta+, RRC 26, 1379 (1982).

C. Samanta+, RRC 34, 1610 (1986).

Possible next step: pn (d-like) correlation

Pairing strength vs. TDX

Y. Chazono, K. Yoshida, K. Yoshida, and KO, in preparation.

- The peak height of the TDX clearly reflects the *pn* pairing strength.
- The deuteron breakup is neglected.
- The elementary process is assumed to be the *pd* elastic scattering.

Breakup effect of the emitted deuteron

Y. Chazono, K. Yoshida, and KO, in preparation.

- The deuteron breakup effect is very large.
- A naïve *pn* single-particle wave function is adopted.
- The elementary process is assumed to be the *pd* elastic scattering.

Summary

I. α cluster structure via (p,pα) [Yoshida_{$\frac{1}{2}$}, Lyu, Kanada-En'yo, Taniguchi, Chiba, Kimura]

- Not S_{α} but the surface α amplitude should be respected.
- (p,pa) has a strong selectivity of the position of a insude a nucleus
- New experimental data will appear soon.

II. di-neutron correlation [Kikuchi, Matsumoto, Uesaka]

- The most important thing is to minimize the effect of the final-state interaction.
- Back-to-back decay mode will be the signature of the ${}^{2}n$ in the 2_{1}^{+} state of 6 He.
- (*p*,*pn*) reaction with high momentum transfer is suitable to probe the 2n in the ground state of 6 He

III. deuteron-like correlation [Chazono, Yoshida $_{\mathbb{B}}$, Yoshida $_{\underline{w}}$, Uesaka]

- (*p*,*pd*) reaction may be used as a probe.
- (*p*,*ppn*) can also be used.
- One should be careful for discussing such a fragile *pn* pair inside a nucleus.

IV. Other activities for probing $\boldsymbol{\alpha}$ clustering

- α inelastic scattering [Chiba, Kimura, Sakuragi]
- α transfer [Fukui, Kanada-En'yo, Suhara, Taniguchi]