中性子分離エネルギーと中性子ドリップ ライン原子核のダイニュートロン相関

1

松尾正之 (新潟大)

ダイニュートロン相関は量子クラスタリング研究の格好の対象

1. イントロ:なにがダイニュートロン相関を引き起こすのか?

強結合(BCS-BECクロスオーバー)、弱束縛(ドリップライン原子核)

2. ダイニュートロン相関と中性子分離エネルギー(弱束縛性)の関係を考察する

漸近領域(量子透過領域)におけるダイニュートロン相関

クラスター形成の測度

中性子過剰Sn 142Sn ドリップライン核 26O

以前の論文 Asymptotic form of neutron Cooper pairs in weakly bound nuclei Y. Zhang, MM, J. Meng, PRC90, 034313 (2014) に基く、いくつかの考察

ハロー原子核におけるダイニュートロン相関

1. Spatially correlated halo neutrons and the pairing in ¹¹Li and ⁶He

G.F.Bertsch, H.Esbensen, Ann. Phys. 209(1991) 327

2. Experimental evidences, but somewhat indirect

Coulomb break-up exp. on 11Li

Nakamura et al. PRL96,252502 (2006)

 $\theta_{nn} = 48^{+14}_{-18} \text{ deg}$ R_{c,2n}=5.01+-0.32 fm

Charge radius

Mueller et al. PRL99,252501 (2007)

2. Efforts for more direct evidences

Two-neutron decay in 26O, Two-proton decay in 17Ne etc --- angular & momentum correlation

Knock-out reaction (p,pn) on 6He Y. Kikuchi et al. PTEP. 216, 103D03 (2016)

引力相互作用の強度とBCS-BECクロスオーバー

Leggett 1980, Nozieres & Schmitt-Rink 1985

希薄中性子物質における BCS-BECクロスオーバー4

ρ/ρ

ドリップライン原子核でダイニュートロン相関が発達^も する理由は?

Hartree-Fock-Bogoliubov理論におけるダイニュートロン相関

Hartree-Fock-Bogoliubov方程式:系を構成する準粒子の波動関数

$$\begin{bmatrix} -\frac{\Delta}{2m} + U_{HF}(x) - \lambda & \Delta_{pair}(x) \\ \Delta_{pair}(x) & \frac{\Delta}{2m} - U_{HF}(x) + \lambda \end{bmatrix} \begin{bmatrix} \varphi_i^{(1)}(x) \\ \varphi_i^{(2)}(x) \end{bmatrix} = E_i \begin{bmatrix} \varphi_i^{(1)}(x) \\ \varphi_i^{(2)}(x) \end{bmatrix}$$

1粒子密度

λ Fermi エネルギー

6

$$\rho(x) = \left\langle \Phi | \psi^{+}(x)\psi(x) | \Phi \right\rangle = \sum_{i} |\varphi_{i}^{(2)}(x)|^{2}$$

空孔(占有)成分波動関数 $\phi_{i}^{(2)}(x)$ の確率密度の総和

クーパーペア波動関数

$$\Psi_{pair}(x,y) = \left\langle \Phi_{N+2} | \psi^{+}(x \uparrow) \psi^{+}(y \downarrow) | \Phi_{N} \right\rangle = \sum_{i} \varphi_{i}^{(1)}(x) \varphi_{i}^{(2)}(y)$$

2個の粒子を位置x,yに付加してN+2系gsに遷移する振幅

2粒子密度 2個の粒子を位置x,yで同時に観測する確率密度

$$\rho_{2}(x,y) = |\Psi_{pair}(x,y)|^{2} + \rho(x)\rho(y)$$
空間的相関 非相関部分
クラスター相関@x~y
ダイニュートロン相関

クラスター(ダイニュートロン)形成測度

$$c(x,y) = \frac{|\Psi_{pair}(x,y)|^{2}}{\rho(x)\rho(y)}$$
または

$$c(x,y) = \frac{\rho_{2}(x,y)}{\rho(x)\rho(y)}$$

HFBによる数値計算例

¹⁴²Sn

²⁶O

例1 中性子過剰核142Sn

1n, 2n 中性子分離エネルギー

◎ 分離エネルギーが小さい(弱束縛)

• $S_{2n} \ge S_{1n}$ の差が小さい $S_{2n} \sim S_{1n} \sim 2MeV \sim 2\Delta$ $|\lambda| \sim \Delta \sim 1MeV$

クーパーペア波動関数(密度分布)

クーパーペア密度分布(重心・相対座標)

例2 "ドリップライン原子核" 26

Experiment

18keV above threshold

Barely unbound nuclei beyond the drip-line Y.Kondo et al. PRL116, 102503 (2016)

Model adjustment

Woods-Saxon potential interpolating Hagino-Sagawa PRC93,034330(2016) for 260 Bohr-Mottelson vol.2 for 160

10

量子透過領域(ハロー)でダイニュートロン 形成が促進されるのはなぜか

論文 Asymptotic form neutron Cooper pairs in weakly bound nuclei Y. Zhang, MM, J. Meng, PRC90, 034313 (2014)

-パーペア波動関数の遠方漸近形

$$\vec{R} \rightarrow \infty \quad \vec{r} \rightarrow \vec{r} \rightarrow \vec{r} \rightarrow \infty$$

$$\vec{r}_1 = \vec{r}_2 = \vec{r} \rightarrow \infty$$

ーパーペア波動関数@ダイニュートロン配位 r₁=r₂ $\Psi_{pair}(\vec{r},\vec{r}) = \left\langle \psi(\vec{r}\uparrow)\psi(\vec{r}\downarrow) \right\rangle \longrightarrow e^{-Kr} \qquad K = \frac{\sqrt{2MS_{2n}}}{\hbar} = \frac{\sqrt{4mS_{2n}}}{\hbar}$ **2n-separation** energy **Di-neutron** mass M=2m 1粒子密度 **In-separation** $2\kappa_1 = \frac{2\sqrt{2mS_{1n}}}{t} = \frac{\sqrt{8mS_{1n}}}{t}$ $\rho(\vec{r}) = \left\langle \psi^{+}(\vec{r}\uparrow)\psi(\vec{r}\uparrow) \right\rangle \longrightarrow e^{-2\kappa_{1}r}$ energy

これらをHFB理論によって解析的・数値的に証明できる

Y. Zhang, MM, J. Meng, PRC90 (2014)

2n-sep
$$S_{2n} = 2 |\lambda|$$
 $\lambda = 7 \pm n \pm \pi n \pm n \pm \pi n \pm \pi$

クーパーペア漸近形の解析的な導出

Y. Zhang, MM, J. Meng, PRC90, 034313 (2014)

まず、HFB理論におけるクーパーペア波動関数は

$$\Phi_{pair}(\vec{r}_1, \vec{r}_2) = \left\langle \Psi_{HFB} \left| \psi(\vec{r}_1 \uparrow) \psi(\vec{r}_2 \downarrow) \right| \Psi_{HFB} \right.$$
$$= \sum_i \phi_i^{(1)}(\vec{r}_1 \uparrow) \phi_i^{(2)}(\vec{r}_2 \downarrow)$$

HFB equation
$$\begin{pmatrix} h - \lambda & \Delta \\ \Delta & -h + \lambda \end{pmatrix} \begin{pmatrix} \phi_i^{(1)} \\ \phi_i^{(2)} \end{pmatrix} = E_i \begin{pmatrix} \phi_i^{(1)} \\ \phi_i^{(2)} \end{pmatrix}$$

- 1. 漸近極限で2粒子シュレーディンガー方程式に従うことが証明できる $r_1, r_2 \to \infty$ $(t(1) + t(2) + v(1,2))\Phi_{pair}(\vec{r_1}, \vec{r_2}) = 2\lambda \Phi_{pair}(\vec{r_1}, \vec{r_2})$
- 2. 漸近解をダイニュートロン座標系で表示すると

$$\Phi_{pair}(\vec{r}_1, \vec{r}_2) = \sum_L \int de C_e^L \phi_e^L(r) \Phi_e^L(R) P_L(\cos \Omega)$$
$$\rightarrow C_0^0 \phi_e^0(r) \exp(-KR)$$

漸近解の主要項 S-波 ダイニュートロ は,small rに対して バーチャル ンの量子透過 状態 $K = \frac{\sqrt{2M(2|\lambda|)}}{\hbar} = \frac{\sqrt{2M S_{2n}}}{\hbar} = \frac{\sqrt{8m|\lambda|}}{\hbar}$ M = 2m2中性子分離エネルギー

漸近指数の数値的検証

Y. Zhang, MM, J. Meng, PRC90, 034313 (2014)

Ca, Ni, Zr, Sn from stable nuclei to neutron drip-line

クーパー対波動関数の漸近指数

 $r^2 \Psi_{pair}(r,r) = C \exp(-\tilde{\kappa} r)$ with numerical fitting to the tail of the pair density

The asymptotics of $\Phi_{pair}(r_1, r_2)$ and $\rho(r)$ in the HFB theory is 19 consistent with the exact asymptotics in the Borromean 3-body system

General asymptotic form in three-body systems
Fedorov, Jensen, Riisager, PRC49, 201 (1994
Merkurev, Sov. J. Nucl. Phys. 19,222 (1974)

$$\Psi_{3body} \sim \exp\left(-\rho\sqrt{2m|E_b|}/\hbar\right)$$

$$m\rho^2 = \frac{M_C m}{M} \left\{ (r_1 - r_c)^2 + (r_2 - r_c)^2 \right\} + \frac{m^2}{M} (r_1 - r_2)^2$$

 $\Psi_{3body} \sim \exp\left(-R\sqrt{2(2m)|E_b|}/\hbar\right)$

 $R = \left|\frac{r_1 + r_2}{2} - r_C\right| \to \infty, \quad |r_1 - r_2| \approx 0$

$$|r_2 - r_c| \approx 0, |r_1 - r_c| \rightarrow \infty$$

$$\Psi_{3body} \sim \exp\left(-\left|r_1 - r_C\right| \sqrt{2m \left|E_b\right|} / \hbar\right)$$

Consistent with one-body density

$$\rho(r) \propto \exp(-2\kappa r)$$
$$\kappa = \frac{\sqrt{2mS_{1n}}}{\hbar} = \frac{\sqrt{4m |\lambda|}}{\hbar}$$

Consistent with pair density $\tilde{\rho}(r) \propto \exp(-\tilde{\kappa} r) \quad \tilde{\kappa} = \frac{\sqrt{2(2m)S_{2n}}}{\hbar} = \frac{\sqrt{8m |\lambda|}}{\hbar}$

- 量子透過領域(スキン・ハロー領域)におけるクーパーペア波動関数・2粒子 相関密度を数値的・解析的に分析
- ダイニュートロン(クラスター)形成測度を定義 $c(x,y) = \frac{|\Psi_{pair}(x,y)|^2}{\rho(x)\rho(y)}$ または $c(x,y) = \frac{\rho_2(x,y)}{\rho(x)\rho(y)}$
- ドリップライン近傍、小さな中性子分離エネルギーがダイニュートロン相関を促進
 - Fermi エネルギー $|\lambda| < \Delta$
 - ・ 1粒子・2粒子分離エネルギー , $S_{1n} \sim S_{2n} < 2\Delta$
 - Borromean では普遍的な漸近形。三体模型と同一の漸近形
- ダイニュートロン形成 vs 分離エネルギー

