低エネルギー核反応と量子クラスターへの 非経験的アプローチ

中務 孝(Takashi Nakatsukasa) 筑波大学 計算科学研究センター

2018.11.19-20 @「量子クラスターで読み解く物質の階層構造」 キックオフシンポジウム

原子間力と核力

Bohr, Mottelson, Nucl. Str. Vol.1

Figure 2.36 The molecular interaction corresponds to a "More extended" Web . Dill evel etc. (WE 1) with the constants adjusted

低温で結晶化 古典近似が可能

量子性の指標

cf) Bohr, Mottelson

量子性の判定パラメータ
 - V₀:相互作用の強さ
 - c:相互作用のレンジ

- 典型的な系における値
 - 重い原子は以下よりもはるかに小さい値

	Λ	絶対零度の相
水素 (H)	0.06	固体
ヘリウム(³ He, ⁴ He)	0.1~0.2	液体
核子(n,p)	0.5	液体

量子クラスターとは?

「量子揺らぎ」の重要性

核反応と大振幅集団運動

- 核崩壊
 - Spontaneous fission
 - Alpha decay
- 低エネルギー核反応
 - Sub-barrier fusion reaction

Time-dependent density functional theory (TDDFT) for nuclei

Time-odd densities (current density, spin density, etc.)

$$E\left[\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \vec{s}_{q}(t), \vec{T}_{q}(t); \kappa_{q}(t)\right]$$

kinetic current spin-kinetic spin-current spin pair density

• TD Kohn-Sham-Bogoliubov-de-Gennes eq.

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

TDDFT再量子化

- 目的
 - (遅い)集団運動に関する量子ゆらぎ (相関)の 取り込み
- 困難
 - 非自明な集団変数(反応経路)の同定
 現象論的には、R を集団座標と仮定

$$\begin{pmatrix} R \\ -\frac{1}{2\mu} \frac{d^2}{dR^2} + \frac{l(l+1)}{2\mu R^2} V(R) \end{pmatrix} \psi(R) = E\psi(R)$$
1つになった後は?

- 手続き
 - 1. 集団部分空間と集団正準変数(q,p)の同定
 - 2. 部分空間上での再量子化 [q,p] = iħ

Decoupled submanifold

Klein, Do Dang, Walet, Phys. Rep. 335, 93 (2000) Nakatsukasa, Prog. Theor. Exp. Phys. 2012, 01A207 (2012)

- Collective canonical variables (q, p)- $\{\xi^{\alpha}, \pi_{\alpha}\} \rightarrow \{q, p; q^{a}, p_{a}; a = 2, \dots, N_{ph}\}$
- Finding a decoupled submanifold Σ

Numerical procedure

 $\frac{\partial V}{\partial \xi^{\alpha}} - \frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}} = 0 \qquad \text{Moving mean-field eq.} \\ B^{\beta \gamma} \left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \right) \frac{\partial q}{\partial \xi^{\beta}} = \omega^2 \frac{\partial q}{\partial \xi^{\alpha}} \qquad \text{Moving RPA eq.}$

Tangent vectors (Generators)

 $q_{,\alpha} = \frac{\partial q}{\partial \xi^{\alpha}} \qquad \xi_{,q}^{\alpha} = \frac{\partial \xi^{\alpha}}{\partial q} \qquad [\xi]$ Moving MF eq. to determine the point: ξ^{α} Move to the next point $\xi^{\alpha} + \delta \xi^{\alpha} = \xi^{\alpha} + \varepsilon \xi_{,q}^{\alpha}$

3D real space representation

- 3D space discretized in lattice
- BKN functional: $E_{\text{BKN}}[\rho, \tau]$ (rather schematic)
- Moving mean-field eq.: Imaginary-time method
- Moving RPA eq.: Finite amplitude method (PRC 76, 024318 (2007))

At a moment, no pairing

1-dimensional reaction path extracted from the Hilbert space of dimension of $10^4 \sim 10^5$.

Wen, T.N., PRC 96, 014610 (2017). Wen, T.N., PRC 94, 054618 (2016).

¹⁶O + α scattering

- Reaction to synthesize heavy elements in giant stars
 - Alpha reaction

¹⁶O + α to/from ²⁰Ne

Change of density distribution along the reaction path

クラスター状態

Fujiwara et al., PTPS 68 (1980) 29.

²⁰Ne: Inertial mass

Reaction path

²⁰Ne: Collective potential

Alpha reaction: $^{16}O + \alpha$

Synthesis of ²⁰Ne

Fusion reaction: Astrophysical S-factor

$$\sigma(E) = \frac{1}{E} P(E) \times S(E)$$

$$\int_{0}^{5} \int_{0}^{4} \int_{0.5}^{4} \int_{$$

結論

- 量子クラスター相関
 - 量子ゆらぎが本質的な「クラスター」
 - クラスター自由度とは?
 - 量子効果をどう取り入れるか?
- Sub-barrier fusion reaction
 - 反応経路を「経験」によらず決定
 - 相対運動から変形ダイナミクスへの転移
- Perspectives
 - Modern energy density functionals
 - 量子化法の改良