Seminar at RCNP, Osaka University 7-9 March, 2019

How are hadrons formed from quarks?

Hiroyuki Noumi RCNP, Osaka University Institute of Particle and Nuclear Studies, KEK

Part I: Introduction

Part II: Experimental Study of Hadrons

- II-1: Λ(1405) and K^{bar}N Interaction
- II-2: Charmed Baryons

Form of Hadrons

Observable	Relevant Physics Quantity	What we learn		
Mass Spectrum	Mass, Width (pole: $M_R - i\Gamma/2$)	Particle state Resonant state	Classification	
Angular Correl. (decay)	Spin, Parity			
Level structure		Internal (effective) DoF	Form (Dynamics of	
Production Rate (Diff. Cross Sect.)	Response Function (Transition) Form Factor	Reaction Mechanism Internal Motion/Corr.	effective DoF in Hadron)	
Partial Width	Internal Correlation (Wave function)	Decay Mechanism Internal Motion/Corr.		

Contents

Part I: Introduction

I-1: Standing Point of this Lecture

I-2: Basic Introduction of Hadrons

Part II: Experimental Study of Hadrons
 II-1: Λ(1405) and K^{bar}N Interaction
 II-2: Charmed Baryon and diquark correlation

$\Lambda(1405)$ since 1961

 Well-known lightest Hyperon Resonance w/ a negative parity

Λ (1405) since 1961

- K^{bar}N int. and its pole position are still unclear.
 Basic information on Kaonic Nuclei
- Not yet demonstrated if it is a molecular state.
 - To establish it as an exotic state
 - Hadron Picture in excited states
 - New question related to classification in CQM
 - Formation probability in hadronization
 - ExHIC (Phys.Rev. C84 (2011) 064910)

Important to study Low Energy K^{bar}N scattering

$\Lambda(1405): 1405.1^{+1.3}_{-0.9}$ MeV (PDG in 2019) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Double pole? $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (Nov. 2015)

Table 1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from nextto-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint.

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. 11,12, NLO	$1424^{+7}_{-23} - i\ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. 14, Fit II	$1421_{-2}^{+3} - i \ 19_{-5}^{+8}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. 15, solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. 15, solution $#4$	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

$\Lambda(1405): 1405.1^{+1.3}_{-1.0}$ MeV (Part. Listing in '19) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^+\pi\Sigma$

J. Esmaili et al: $\pi\Sigma$ IM Spec. of Stopped K⁻ on ⁴He

R.H. Dalitz et al: $\pi\Sigma$ IM Spec. in K-p \rightarrow ππΣ w/ M-matrix

LQCD Evidence that $\Lambda(1405)$ is a K^{bar}N molecule

 Study of K^{bar}N scattering below the K^{bar}N thres. are important.

Deeply Bound K⁻-Nucleus System ?

Kp散乱長を再現

Y. Akaishi & T. Yamazaki, Phys. Lett. B535 (2002) 70.

クォークと反クォークが共存する奇妙な原子核の発見

 ・大阪大学博士論文(理学)山我拓巳 2018年6月
 ・Physics Letters B789(2019)620 2019年2月 (オンライン出版2018年12月)
 ・雑誌パリティ1月号 岩崎、野海
 ・プレスリリース 1月24日 (理研,阪大, J-PARC, KEK, JAEA, 東北大, INFN, SMI)

	Physics Letters B 789 (2019) 620-625	
	Contents lists available at ScienceDirect	PHYSICS LETTERS B
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

クォークと反クォークが共存する原子核: K中間子核の世界

岩﨑雅彦,野海博之

原子核は有限個の核子(陽子や中性子の 総称)の集合体である。湯川秀樹は、核 内に核子をつなぎ止める"糊"として中間 子の存在を予言した。"糊"として核内を 満たす中間子は、"力の場"(原子核ポテン シャル)を形成し、核子を束縛させ、原子 核をつくる。この中間子は不確定性原理 に従って現れては消える"仮想粒子"であ " K^-pp ", a \overline{K} -meson nuclear bound state, observed in ${}^{3}\text{He}(K^-, \Lambda p)n$ reactions

J-PARC E15 collaboration, S. Ajimura ^a, H. Asano ^b, G. Beer ^c, C. Berucci ^d, H. Bhang ^e, M. Bragadireanu ^f, P. Buehler ^d, L. Busso ^{g,h}, M. Cargnelli ^d, S. Choi ^e, C. Curceanu ⁱ, S. Enomoto ^j, H. Fujioka ^k, Y. Fujiwara ^l, T. Fukuda ^m, C. Guaraldo ⁱ, T. Hashimoto ⁿ, R.S. Hayano ^l, T. Hiraiwa ^a, M. Iio ^j, M. Iliescu ⁱ, K. Inoue ^a, Y. Ishiguro ^o, T. Ishikawa ^l, S. Ishimoto ^j, K. Itahashi ^b, M. Iwasaki ^{b,k,*}, K. Kanno ^l, K. Kato ^o, Y. Kato ^b, S. Kawasaki ^a, P. Kienle ^{p,1}, H. Kou ^k, Y. Ma ^b, J. Marton ^d, Y. Matsuda ^l, Y. Mizoi ^m, O. Morra ^g, T. Nagae ^o, H. Noumi ^a, H. Ohnishi ^{q,b}, S. Okada ^b, H. Outa ^b, K. Piscicchia ⁱ, Y. Sada ^a, A. Sakaguchi ^a, F. Sakuma ^{b,*}, M. Sato ^j, A. Scordo ⁱ, M. Sekimoto ^j, H. Shi ⁱ, K. Shirotori ^a, D. Sirghi ^{i,f}, F. Sirghi ^{i,f}, K. Suzuki ^d, S. Suzuki ^j, T. Suzuki ^l, K. Tanida ⁿ, H. Tatsuno ^r, M. Tokuda ^k, D. Tomono ^a, A. Toyoda ^j, K. Tsukada ^q, O. Vazquez Doce ^{i,p}, E. Widmann ^d, T. Yamaga ^{b,a,*}, T. Yamazaki ^{l,b}, Q. Zhang ^b, J. Zmeskal ^d

$\Lambda(1405)$: Controversial Experimental Data? $J^{P} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

 $pp \rightarrow K^+ p \pi^- \Sigma^+, K^+ p \pi^+ \Sigma^-$ (a) data ۸(1405) Σ(1385) Σ(1385) dσ/dM [μb/(MeV/c²)] (1520) $\Sigma * (1)$ non l res 0.05 γć $\Sigma(11)$ 0.1 (b) Σ-π+ $\gamma p \rightarrow K^+ \pi^- \Sigma^+, K^+ \pi^0 \Sigma^0, K^+ \pi^+ \Sigma^$ da/dM [μb/(MeV/c²)] 0.05 3 W = 2.10 GeV $E_{\gamma} = 1.88 \text{ GeV}$ dσ/dm (μb/GeV) $\Sigma^+\pi^-+\Sigma^-\pi^+$ (c) 0.15 dσ/dM [µb/(MeV/c²)] 0.1 0.05 $\Sigma^{-}\pi^{-}$ 0 1.35 1.4 1.45 15 ×10³ 1.4 1.5 1.6 1.3 $\Sigma\pi$ Invariant Mass (GeV/c²) MM(p,K⁺) [MeV/c²]

CLAS collaboration: PRC87, 035206

HADES collaboration: PRC87, 025201

K^-p scattering data

K^{bar}N scattering below the K^{bar}N thres. (J-PARC E31)

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	I=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ(1385) (I=1, P wave) to be suppressed)
$\pi^-\Sigma^0$ $[\pi^-\Lambda]$	I=1	non-resonant (Σ (1385) to be suppressed) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ(1405) (I=0, S wave) , non-resonant

Experimental Setup for E31

Schematic Drawings of Detectors

• Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

$$d(K^-,n\pi^+\pi^-)$$
"n" samples contain...

Signal Events

$$d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$$

Background Events

$\pi^{+}\Sigma^{-}/\pi^{-}\Sigma^{+}$ Mode (I = 0, 1)

 $\pi^{-}\Sigma^{0}/\pi^{-}\Lambda$ Mode (I = 1)

$\pi^{-}\Sigma^{0}/\pi^{-}\Lambda$ Mode (I = 1)

The I=0 amplitude is dominant.

Event topology of $d(K^-, n)X_{\pi^0\Sigma^0}$

BG Process: $d(K^{-}, n) X_{\pi^{0}\Lambda}, d(K^{-}, n) X_{\pi^{0}\pi^{0}\Lambda}, d(K^{-}, \Sigma^{-}p) X$

$\pi^0 \Sigma^0 (I=0)$

$\pi^{-}\Sigma^{+}$ Mode 2nd Run Data preliminary

$$\frac{d\sigma}{d\Omega}(\pi^0\Sigma^0) \sim \frac{1}{3}|f_{I=0}|^2$$

Comparison w/ theory

Remarks

- Structures below and above the $\overline{K}N$ threshold are observed in $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$
 - Interference btw I=0 and 1.
 - I=0 amp. seems dominant in $\pi^{\pm}\Sigma^{\mp}$ modes.
 - From measured pure I=1 channel, $d(K^-, p)X_{\pi^-\Sigma^0}$.
- How to decompose the I=0 and 1 amps. ?
 - Significant yield nearby the K^{bar}N threshold but no clear peak structure
 - A simple "BW + Some plausible function" seems too naïve to explain the spectra...

Decompose the Spectra...

2-step process

 $\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |\langle n\pi\Sigma | T_2^I(\overline{K}N, \pi\Sigma) G_0 T_1(K^-N, \overline{K}N) | K^-\Phi_d \rangle|^2 \\ \sim |T_2^I|^2 f_{QF}(M_{\pi\Sigma}) \qquad \text{Factorization!}$

$$\left|T_{2}^{I}\right|^{2} \sim \frac{1}{3} |f_{I=0}|^{2} + \frac{1}{2} |f_{I=1}|^{2} \pm \frac{\sqrt{6}}{3} \operatorname{Re}(f_{I=0}f_{I=1}^{*})$$

$$f_{QF}(M_{\pi\Sigma}) \sim \left| \int_0^\infty dq_{N_2}^3 T_1 \frac{1}{E_{\bar{K}} - E_{\bar{K}}(q_{\bar{K}}) + i\epsilon} \Phi_d(q_{N_2}) \right|^2, q_{\bar{K}} + q_{N_2} = q_{\pi\Sigma}$$

E31: Response Function, $F_{QF}(M_{\pi\Sigma})$

- $F_{QF}(M_{\pi\Sigma}) = \left| \int G_0(q_2, q_1) T_1 \Phi_d(q_2) d^3 q_2 \right|^2$
 - $-G_{0}(q_{2},q_{1}) = \frac{1}{q_{0}^{2}-q'^{2}+i\varepsilon}f(q_{0},q')\frac{\left(\sqrt{P_{\pi\Sigma}^{2}+M_{\pi\Sigma}^{2}}+\sqrt{P_{\pi\Sigma}^{2}+W(q')^{2}}\right)}{M_{\pi\Sigma}+W(q')},$ $f(q_{0},q')^{-1} = [E_{1}(q_{0}) + E_{1}(q')]^{-1} + [E_{2}(q_{0}) + E_{2}(q')]^{-1}$ Miyagawa and Haidenbauer, PRC85, 065201(2012)
 - T_1 : K^-n → K^-n (I = 1), K^-p → $\overline{K}^0n(I = 0,1)$ amplitude, Gopal et al., NPB119, 362(1977)
 - $T(K^-n \to K^-n) = f(I=1)$
 - $T(K^-p \to \overline{K}^0 n) = [f(I=1) f(I=0)]/2$
 - $-\Phi_d(q_2)$: deuteron wave function, PRC63, 024001(2001)
S-wave contributions in the threshold region

Scattering Amplitude

L. Lensniak, arXiv:0804.3479v1(2008)

•
$$T_{22} = \frac{A}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \overline{K}N)$$

• $T_{12} = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \pi\Sigma)$
• $T_{11} = \frac{e^{i\delta_0}}{k_1} \frac{(\sin \delta_0 + iIm(e^{-i\delta_0}A)k_2 - \frac{1}{2}Im(e^{-i\delta_0}AR)k_2^2)}{1 - iAk_2 + \frac{1}{2}ARk_2^2}$
 $(\pi\Sigma \to \pi\Sigma)$

- ・5つの実数パラメータ
 - A:散乱長、R:有効レンジ、δ₀:位相

To deduce $\overline{K}N$ scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |\langle n\pi\Sigma|T_2^I(\overline{K}N,\pi\Sigma)g_2G_0g_1T_1(K^-N,\overline{K}N)|K^-\Phi_d\rangle|^2 \\ \sim |T_2^I|^2F_{QF}(M_{\pi\Sigma})$$

$$T_{12} = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \pi\Sigma)$$

$$T_{22} = \frac{A}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \overline{K}N)$$

To deduce $\overline{K}N$ scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^I|^2 F_{QF}(M_{\pi\Sigma})$$

To deduce \overline{KN} scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^I|^2 F_{QF}(M_{\pi\Sigma})$$

Further Studies of $\Lambda(1405)$: K^{bar}N molecule? <u>Measurement of K^{bar}N $\rightarrow \pi\Sigma$ transition below K^{bar}N threshold</u> Reactions coupled to the $\overline{K}N\Lambda^*$ vertex ($\overline{K}N\rightarrow\pi\Sigma$ channel)

Identification of the Spin-Isospin states

Л (1405)	S-wave, I=0	$\pi^0\Sigma^0, \pi^{+/-}\Sigma^{-/+}$	
Non-resonant	S-wave, I=1	$\pi^0\Lambda,\pi^{+/-}\Sigma^{-/+}$	
Σ [*] (1385)	P-wave, I=1		

4π Detector developed for LEPS2

Contents

Part I: Introduction

- I-1: Standing Point of this Lecture
- I-2: Basic Introduction of Hadrons

Part II: Experimental Study of Hadrons II-1: Λ(1405) and K^{bar}N Interaction II-2: Charmed Baryon and diquark correlation

What are good building blocks of Hadrons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

Diquarks

Color-Magnetic Interaction of two quarks $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$

"Good Diquark": Strong Attraction $V_{CMI}({}^{1}S_{0}, \overline{3}_{c}) = 1/2*V_{CMI}({}^{1}S_{0}, 1_{c})$ [qq] [qq]

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

 $M^2 \sim \Omega * L$

A distance of $[qq]-q/\overline{q}-q$ increases as L increases.

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

48

Emergent Diquarks

Baryons as well as Mesons seem to be well described by a Rotating String Configuration with a universal string tension.

"diquark" in low-lying modes

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

High-res., High-momentum Beam Line

Spectrometer Design

Spectrometer Design

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+ Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm) ⁵³

Charmed Baryon Spectroscopy Using Missing Mass Techniques

✓ Production and Decay reflect [qq] correlation in Excited Y_c*
 ✓ C.S. DOES NOT go down at higher L when q_{eff} >1 GeV/c.

S.H. Kim, A. Hosaka, H.C. Kim, and HN, PTEP, (2014) 103D01, S.H. Kim, A. Hosaka, H.C. Kim, and HN, Phys.Rev. D92 (2015) 094021

Production Cross Section

- Experimental data:
 - $\sigma(p(\pi^{-},D^{*-})\Lambda_{c}) < 7 \text{ nb} (68\% \text{CL})$ (BNL exp., 1985)
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production

 $- \underline{\sigma(p(\pi^-, D^{*-})\Lambda_c) \sim a \text{ few nb}}$

discussed with A. Hosaka

Revisit the Regge Theory

 shows the typical s-dependence of binary reaction cross sections at the large s region;

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s (p_{\pi}^{cm})^2} \left| \left\langle f \left| T \right| i \right\rangle \right|^2 \left\langle f \left| T \right| i \right\rangle = g_1 g_2 \Gamma(-\alpha(t)) (s / s_0)^{\alpha(t)}$$

$$\alpha(t) = \alpha(0) - \gamma[\sqrt{T} - \sqrt{t-T}]$$

- Regge trajectory:
- scale parameter s_0 :

s at the threshold energy of the reaction AB \rightarrow CD (*In Kaidalov's Model: $s_0^{2(\alpha_D * (0) - 1)} = s_{CD}^{\alpha_p(0) - 1} * s_{CD}^{\alpha_{J/\psi}(0) - 1}$

 $s_{AB} = (\Sigma m_i)_A * (\Sigma m'_j)_B, m_i$:transversal masses of the consituent quark)

Production Cross Section

S.H. Kim, A. Hosaka, H.C. Kim, and HN PRD92, 094021(2015)

57

Production Rate

• *t*-channel *D** *Reggeon* at a forward angle

S. H. Kim, et al., PTEP, 2014, 103D01(2014) Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

 $A^{0.42}$ GeV ([Baryon size]⁻¹) $q_{eff}^{1.4}$ GeV/c

Excitation Energy Dependence

- Production Rate in a quark-diquark model:
 - D^* exchange at a forward angle

 $R \sim \gamma C |K \cdot I|^2 p_B$

- Radial integral of wave functions

 $I \sim \sqrt{2} \int d\vec{r}^{3} [\varphi_{f}^{*}(\vec{r}) \exp(\vec{q}_{eff}\vec{r})\varphi_{i}(\vec{r})]$

$$q_{eff} = \vec{p}_p \times m_d / M_p - \vec{p}_{Y_c} \times m_d / M_{Y_c},$$
$$m_d : "ud" \text{ diquak mass}$$

Taking Harmonic Oscillator Wave Functions

- $I \sim (q_{eff}/A)^{L}exp(-q_{eff}^{2}/2A^{2})$, where A: oscillator parameter (0.4~0.45 GeV)
- For larger q_{eff} , the relative rate of a higher L state to the GS increases as ~ $(q_{eff}/A)^{L}$
- Spectroscopic Factor: γ
 - pick up good/bad diquark configuration in a proton
 - A residual "ud" diquark acts as a spectator
- Kinematic Factor w/ a propagator :

 $K \sim k_{D^*}^0 k_\pi (|\vec{p}_B|/2m_B-1)/(q^2-m_{D^*}^2)$

- Spin Dependent Coefficient, C:
 - Products of CG coefficients based on quark-diquark spin configuration
 - Characterized by the spin operator in the vector meson exchange, $\,ec{e}_{D^*}^ot\cdotec{\sigma}\,$

 $\Rightarrow \begin{array}{l} \gamma=1/2 \text{ for } \Lambda_c \text{'s} \\ =1/6 \text{ for } \Sigma_c \text{'s} \end{array}$

Production Cross Section

A. Hosaka et al.

- Experimental data:
 - $\sigma(p(\pi^{-},D^{*-})\Lambda_{c}) < 7 \text{ nb} (68\% \text{CL})$ (BNL exp., 1985)
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production

 $- \underline{\sigma(p(\pi^-, D^{*-})A_{\underline{c}})} \sim a \text{ few nb}$

Comparison of production rates

• $p(\pi^-, D^{*-})Y_c^*$ (Calculation)

e⁺e⁻ Belle Data (Hadron2013)

New data from LHCb

- $D^0 p$ invariant mass in $\Lambda_b \rightarrow D^0 p \pi^-$
 - $-\Lambda_c(2940)$
 - likely 3/2-, (acceptable 1/2, 7/2)
 - $-\Lambda_c(2880)$
 - 5/2+ confirmed
 - $-\Lambda_c(2860)$
 - likely 3/2+, new D-wave resonance?

J. High Energ. Phys. (2017) 2017

- Production rates of these states in $p(\pi^-, D^{*-})Y_c^*$ tell us:
 - if $\Lambda_c(2940)$ is an *L*=3 state (λ mode).
 - if $\Lambda_c(2880)$ and $\Lambda_c(2860)$ are *LS* partners of *L*=2 (λ modes).

 $\rho - \lambda$ mixing (cal. By T. Yoshida)

Does $\Lambda(2880)$ have L=2?

- P-wave transition seems to be suppressed in $\Lambda_c(2880)^{\frac{5}{2}^+} \rightarrow \Sigma_c^*(2520)^{\frac{3}{2}^+} + \pi(0^-).$
- It would be forbidden only in the case of $J_{BM}^P = 3^+$:
 - Negative party states "5/2-" have large widths.

(H. Nagahiro et al., PRD95 (2017) no.1, 014023)

Λ _c (2880) 5/2+	λλ	λρ	ρρ	Σ _c *(2520) 3/2+
color	Asymm.			Asymm
Isospin	Asymm. (I=0)			Symm. (I=1)
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2	Symm. 1 Symm, 0
Lambda orbit	2	1	0	0
J _{BM} ^P	2+	1+, 2+, <mark>3+</mark>	2+	1+

- $\Lambda_c(2880)^{\frac{3}{2}+}$ is likely to be $\lambda\rho$ mode ($\lambda=1, \rho=1$).
 - Since, Naively, Ex($\lambda\lambda$)<Ex($\lambda\rho$), Ex(2880) is too low if it is a $\lambda\rho$ state.
- This can be tested by measuring its production rate.

 $\Gamma(Y\pi) > \Gamma(DN)$

 $\Gamma(DN) > \Gamma(Y\pi)$

* Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* - pD)/\Gamma(\Lambda_c^* - \Sigma_c \pi)$.

Hint in $R(NK)/R(\pi\Sigma)$

PDG Data

- Decay ratios in known hyperons SUGGEST the λ/ρ mode states
- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

Double Strange Baryon Spectroscopy Using Missing Mass Techniques

Production and Decay reflect [QQ] correlation...
 U-channel production may be dominant...

- λ and ρ mode excitations interchange $\sigma_q \sigma_{QQ}$ (+SO) λ Ξ(1/2-, 3/2-, 5/2-) QQP-wave Ξ(1/2-,3/2-) λ mode 三(1/2-, 3/2-) q ρ mode Q Ξ^{*}(3/2+) Q-Q G.S. 三(1/2+)
- Level Structure of double-Q baryons
Xi Baryons

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida) D

Little is known for $\boldsymbol{\Xi}$

Т	hreshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		三(2500)	??	1*	150?				
		三(2370)	??	2*	80?				Ω K~9±4
ſ	ΩΚ(2166)	王(2250)	??	2*	47+-27?				
		三(2120)	??	1*	25?				
$\mathbf{\nabla}$	ΣK*(1983)) ^{ΛK*(1908)}	三(2030)	>=5/2?	3*	20 ⁺¹⁵ -5	small	~20	~80	
T		三(1950)	??	3*	60+-20	seen	seen		
K(1878)''		三(1820)	3/2-	3*	24 ⁺¹⁵ -10	small	Large	Small	
×π(1665) ²	EK(1685)	Ξ(1690)	??	3*	<30	seen	seen	seen	
Λ(1000)	K(1610)	三(1620)	??	1*	20~40?				
		Ξ(1530)	3/2+	4*	19	100			

∑*

[I]

тоо

- Narrow width: ~ a few 10 MeV
- Large production cross section: ~ 1 μb

Spectrometer Design

Muon ID

76

Conceptual design of muon identification system for the J-PARC E50

T. Sawada, W.C. Chang et al., PRD93, 114034(2016)

Hadron Tomography w/ Exclusive Drell-Yan

CHARM Spectrometer + Muon Detector at High-p BL

 $\pi^- + p \rightarrow \mu^+ + \mu^- + n$

$$\pi^{-} + p \to \mu^{+} + \mu^{-} + \Delta^{0}$$

$$K^{-} + p \to \mu^{+} + \mu^{-} + Y^{*}$$

N→∆ (*Y**) TDA

$P_c(4380), P_c(4450)$ from LHCb

- Found in $J/\psi p$ invariant mass in $\Lambda_b \to J/\psi p K^-$
 - $-m_{4380} = (4380 \pm 8 \pm 29)$ MeV, $\Gamma = (205 \pm 18 + 86)$ MeV

 $m_{4450} = (4449.8 \pm 1.7 \pm 2.5)$ MeV, $\Gamma = (39 \pm 5 + 19)$ MeV

- J^{P} : (3/2-, 5/2+) most likely, respectively
 - (3/2+, 5/2-), (5/2+,3/2-) are acceptable.
- Hidden $c\bar{c}$ state, P_c^0 may exist.
- decay branch?

 $- J/\psi + N, \overline{D}^{(*)} + Y_c^{(*)}$

• Its spin family?

$P_{c}(4380), P_{c}(4450)$ at J-PARC

• P_c^0 : s-channel formation with 10 GeV/c π^- on p

ightarrow

Thank you for your attention