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by measuring
alpha inelastic scattering
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Cluster Structures

Cluster structures can be seen on all physical scale.
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A galaxy contains 107—1012 stars. Quarks are confined in hadron at normal T.

50—100 galaxies constitute a Quarks are deconfined and form QGP at
cluster of galaxies. high T.

Cluster correlation is very important
to study the dynamics on each physical scale.



Excitation energy

Cluster States in N = 4n Nuclei

a clustering is an important concept in nuclear physics for light nuclei.

a cluster structure is expected to emerge near the a-decay thresholds in N = 4n
nueclei
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The 0%, state at E, = 7.65 MeV in 12C is a famous 3 & cluster state.



Alpha Condensed States in 12C
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Maybe, a new conformation of dilute nuclear matter.



ACS and Symmetry Energy

If o condensed states universally exist in various nuclei ....

— Establish a condensed phase as a conformation of the dilute nuclear matter

— Might appear on the surface of neutron stars

— Energy and width of ACS give an insight to the dilute nuclear matter.
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ACS affects
macroscopic natures of nuclear matter.
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o Condensed States in Heavier N = 4n Nuclei
S 25-
a condensed states in 8Be and!?C gzo Na condensed state .
seem to be established. 3 “Ca
‘Q a
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nuclei (A<40) are ‘g o 2g 036 Mey,
theoretically predicted. 2 BSi AT 32y
g N 24Mg/' 280 eV
Short range a-a attraction & ° 160) NE/' 2.4 Mey, °V
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Energy of dilute Na state increase with N. 1 yqna4q ':nd P. Schuck,
N a are confined in Coulomb barrier. Phys. Rev. C 69, 024309 (2004).

If such Na condensed states are formed, they should sequentially
decay into lighter o condensed states by emitting o particles.

@ decay measurement might be a probe to search for the o condensed state.



Decay of Alpha Condensed state in ?°Ne

ACS decays via ACM in lighter nuclei by emitting low-energy « particles
5a condensed state J” = O* 4o condensed state (0%,) in 10

several MeV @D o Candidate at E, ~ 15.1 MeV
‘ | @@ & ° few MeV
\t\l9l7 MeV  5a \ 4a+a

i 16.86 MeV '°Ne+n

Y. Funaki ef al., Phys. Rev. Lett. 101, 082502 (2008) .
Y. Funaki, Phys. Rev. C 97, 021304(R) (2018).
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Low-energy decay particle measurement
in coincidence with alpha inelastic scattering.

11.98 MeV !2C+8Be
1189 MeV/ \12C+C|+0

alpha inelastic scattering at 0°
is useful to excite O* states.
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Experiment

Experiment was performed at RCNP, Osaka
Background-free measurement at extremely forward angles
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Ultra Thin 2°°“Ne Gas Target

20Ne gas
Isotopically enriched 2°Ne gas target ° m§1 1
— Gas searing film causes problems
to detect low-energy particles
— Commonly used Alamid film (a
few um) is too thick.

SiNx film (0.1 um) was used to make
°ONe gas target at 14 kPa (89.6 ug/cm?).

SiNx Aramid
Thickness 100 nm 15 um

Threshold
energy for o

0.09 MeV 0.51 MeV




Decay Particle Detectors

Si detector array

— 3 layers x 6 segments
Ist layer (thin): 65 um 8 strip
2nd & 3rd layers (thick):
500 um or 600 um

— PID by TOF

Limitation in distance from target
Solid Angle 4%
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Decay to the 4 @ condensed state

23.5-MeV state enhances
in the decay spectrum to
the 4 o candidate (0% in 1°0).
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Next step: 6 a in 24Mg

30 — Strong candidate of the 5 state



Previous Measurement in 2*Mg

Decay particles from excited states in Mg were measured.
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Highly Excited Region

6a condensed state was searched for in the highly excited region.

N. Yamada and P. Schuck,
Phys. Rev. C 69, 024309 (2004).
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8Be Emission Events

8Be(0*,) emission events were indentified from 2« emission events by E, in éBe.
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- Several states at 20.5, 22.0, and 24.3 MeV
were observed near the 12C+3 a threshold.

- Possible structures were seen above the 6a
threshold although statistically poor .
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How to Increase Detector Solid Angle

PID by TOF limits distance from targeft.
Long distance — Small solid angle

Need a new PID method

PSA

Stopping _dE AZ?
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PSA solves the limitation

from the flight distance.

— Drastically increase
detector solid angle.
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®)  Pulse Shape Analysis

Charged particles with same E stop at
different position depending on A and Z.
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Pulse Height

Different pulse shape
for each particle

Time

PSA was successfully done for
Heavy ion at E > 100 MeV,

but no result for low-energy o
particle at E < 3 MeV.



PSA using Neural Network

PSA for low-energy light » We tried PSA
particles is not easy.

p’ d’ t’
3He and «

lst 2nd 3rd

using the neural network.

Tagged ‘rr'ammg daTa

9 10

AE [MeV|

S st - Machine -
E 42_ ad e ot et Leaf'ning > ' (‘Y\\.
20 Q08" WO
5° m) :=° i
o E 807 Cce, 100 Eyyrrwmuw
= ' < | i el || 099L, g
o | 0.6 "'||| HW' ‘ ‘ 1400 1500
Téc?ol = 1300 = 1400 — I‘|5|00I = I16I00I = I1 7|(')0I — I180( “. 1 ‘
Time (ms) OS5
0 500 1000 1500
Epoch

Pulse shape was acquired by

500 MHz Sampling FADC

Decay particle detector with large angular coverage
will be developed to search for alpha condensed states.



Summary

Alpha condensed state is a new conformation
of dilute nuclear matter.

Inelastic a scattering and decay particle
measurements are useful probes to
examine « cluster structure in nuclei.

- Low-energy a particle detection
over large solid angle is important.

A new particle detector will be developed.
- PSA using a neural network technique



