Search for alpha condensed states by measuring alpha inelastic scattering

Takahiro KAWABATA Department of Physics, Osaka University

Cluster Structures

Cluster structures can be seen on all physical scale.

Galaxy

A galaxy contains 10⁷—10¹² stars. 50—100 galaxies constitute a cluster of galaxies. Quarks are confined in hadron at normal T. Quarks are deconfined and form QGP at high T.

Cluster correlation is very important to study the dynamics on each physical scale.

Cluster States in N = 4n Nuclei

 α clustering is an important concept in nuclear physics for light nuclei.

 α cluster structure is expected to emerge near the α -decay thresholds in N = 4n nuclei

The O_2^* state at $E_x = 7.65$ MeV in ${}^{12}C$ is a famous 3α cluster state.

Alpha Condensed States in ¹²C

ACS and Symmetry Energy

If α condensed states universally exist in various nuclei

- \rightarrow Establish α condensed phase as a conformation of the dilute nuclear matter
- \rightarrow Might appear on the surface of neutron stars
- \rightarrow Energy and width of ACS give an insight to the dilute nuclear matter.

α Condensed States in Heavier N = 4n Nuclei

If such N α condensed states are formed, they should sequentially decay into lighter α condensed states by emitting α particles.

 α decay measurement might be a probe to search for the α condensed state.

Decay of Alpha Condensed state in ²⁰Ne

ACS decays via ACM in lighter nuclei by emitting low-energy α particles

Experiment

Experiment was performed at RCNP, Osaka

Background-free measurement at extremely forward angles

Ultra Thin ²⁰Ne Gas Target

Isotopically enriched ²⁰Ne gas target

- → Gas searing film causes problems to detect low-energy particles
- → Commonly used Alamid film (a few um) is too thick.

SiNx film (0.1 um) was used to make ²⁰Ne gas target at 14 kPa (89.6 ug/cm²).

	SiNx	Aramid
Thickness	100 nm	1.5 μ m
Threshold energy for α	0.09 MeV	0.51 MeV

Decay Particle Detectors

Si detector array

- → 3 layers × 6 segments
 1st layer (thin): 65 um 8 strip
 2nd & 3rd layers (thick):
 500 um or 600 um
- → PID by TOF Limitation in distance from target Solid Angle 4%

Decay Particle Measurement

Decay to the 4α condensed state

Previous Measurement in ²⁴Mg

Decay particles from excited states in ²⁴Mg were measured.

Highly Excited Region

6a condensed state was searched for in the highly excited region.

- 6α condensed state is expected at 5 MeV above the 6a threshold.
 - $-E_x \sim 28.5 + 5 = 33.5 \text{ MeV}$
- No significant structure suggesting the 6 α condensed state.
 - Several small structures indistinguishable from the statistical fluctuation.
 → Need more statistics.

⁸Be Emission Events

⁸Be(O⁺₁) emission events were indentified from 2 α emission events by E_x in ⁸Be.

0.8

0.6

0.4

0.2

36

Efficiency (%)

How to Increase Detector Solid Angle

PID by TOF limits distance from target. Long distance → Small solid angle Need a new PID method

Pulse Shape Analysis

PSA solves the limitation from the flight distance.

→ Drastically increase detector solid angle.

PSA was successfully done for Heavy ion at E > 100 MeV, but no result for low-energy α particle at E < 3 MeV.

PSA using Neural Network

will be developed to search for alpha condensed states.

Summary

Alpha condensed state is a new conformation of dilute nuclear matter.

Inelastic a scattering and decay particle measurements are useful probes to examine α cluster structure in nuclei.

- Low-energy α particle detection over large solid angle is important.

A new particle detector will be developed.

- PSA using a neural network technique