$\begin{array}{l} \textbf{B01 REPORT} \\ \textbf{(ANALYSIS STATUS OF } \Sigma P \text{ SCATTERING} \\ \text{EXPERIMENT)} \end{array}$

Koji Miwa (Tohoku Univ.)

Contents

B01 Group Introduction

- Σp scattering experiment at J-PARC
 - Physics motivation
 - Experimental setup
 - Analysis status
- Summary

Goals of B01: Hierarchy of matter investigated via strange hadron clusters

Answer the following questions at J-PARC using strange quarks

- (a) <u>Can we understand the nuclear force</u> <u>(B-B forces) from the quark hierarchy?</u>
 - Σ^{\pm} -p scattering experiment (E40) Σ 🔍
 - H-dibaryon search (E42) H
 - Ξ-hypernuclei via ¹²C(K⁻,K⁺) (E70)

₽A

(b) Why are the nucleon hierarchy / the nuclear hierarchy well separated?

"K⁻pp" and "K⁻ppp" to explore the meson-baryon sub-hierarchy

Structure of "K⁻ppp"

How does K⁻ behave in a nucleus?

Measure the Λ 's magnetic moment in a nucleus (E63) Does baryons change their structure in a nucleus?

Λ(1405

Baryon-Baryon interactions with strangeness

ANALYSIS STATUS OF ΣP SCATTERING EXPERIMENT

Koji Miwa (Tohoku Univ.) for the J-PARC E40 collaboration

Quark Pauli effect in ΣN channel

Current status of YN scattering experiment

- NN scattering data : quite accurate
- YN scattering data : very poor statistics

Y. Kondo Doctor thesis

Comparison of Beam

Proton beam (10^{12~13} particle / pulse)

J-PARC E40 :

Measurement of d\sigma/d\Omega of Σp scatterings

- Physics motivations
 - Verification of repulsive force due to quark Pauli effect in the $\Sigma^+ p$ channel
 - Systematic study of the ΣN interaction by separating isospin channel
- Measurement of d\sigma/d\Omega
 - Aim to detect 10,000 events
 - $\Sigma^+ p$ elastic scattering
 - $\Sigma^{-}p$ elastic scattering
 - $\Sigma p \rightarrow An$ inelastic scattering

Kinematical identification of Σp scattering Using LH_2 target and surrounding detector

Experimental key issues

- Usage of high intensity π beam : 2×10^7 / spill (spill = 2 sec)
- Large acceptance detector for scattered proton

J-PARC E40 Collaborators

Tohoku Univ. : T. Aramaki, N. Chiga, N. Fujioka, M. Fujita, R. Honda, M. Ikeda, Y. Ishikawa, H. Kanauchi, S. Kajikawa, T. Koike, K. Matsuda, Y. Matsumoto, K. Miwa, S. Ozawa, T. Rogers, T. Sakao, T. Shiozaki, H. Tamura, H. Umetsu

JAEA : S. Hasegawa, S. Hayakawa, K. Hosomi, Y. Ichikawa, K. Imai, H. Sako, S. Sato, K. Tanida , T.O. Yamamoto, J. Yoshida

KEK : Y. Akazawa, M. leiri, S. Ishimoto, I. Nakamura, S. Suzuki, H. Takahashi, T. Takahashi, M. Tanaka, M. Ukai RIKEN : H. Ekawa

Chiba Univ. : H. Kawai, M. Tabata

Kyoto Univ. : S. Ashikaga, T. Gogami, T. Harada, M. Ichikawa, T. Nanamura, M. Naruki, K. Suzuki Osaka Univ. : K. Kobayashi, S. Hoshino, Y. Nakada, R. Nagatomi, M. Nakagawa, A. Sakaguchi RCNP : H. Kanda, K. Shirotori, T.N. Takahashi Okayama Univ. : K. Yoshimura Korea Univ. : J.K. Ahn, S.H. Kim, W.S. Jung, S.W. Choi, B.M. Kang OMEGA Ecole Polytechnique-CNRS/IN2P3 : S. Callier, C.d.L. Taille, L. Raux

Joint Institute for Nuclear Research : P. Evtoukhovitch, Z. Tsamalaidze

E40 detector setup concept

Σ^- beam momentum distribution

CATCH analysis : Particle ID

CATCH analysis w/ Σ^- event

Proton event in Σ^- production

$\Sigma^{-}p \rightarrow \Lambda n$ conversion

Simulation

 Λn conversion events are kinematically separated from other background

1. $\Sigma^{-}p \rightarrow \Lambda n$ conversion events can be clearly identified !

2. Background spectrum is almost consistent with our estimation.

Identification of Σ^-p reactions

We checked kinematical consistency for each reaction. The peak at Δp (ΔE) =0 satisfies the kinematical consistency for each reaction.

We could detect ~150 scattering events for both reactions from ~700 k Σ^- beam. In the 2nd production run, ~18 M Σ^- beam was accumulated.

 \rightarrow ~ 4000 scattering events are expected. (~100 times larger statistics than past experiment)

Expected physics outputs

- Σp scattering observables
 - $\Sigma p \rightarrow An$ conversion
 - proton up-down asymmetry
 - cross section
 - Σ -p elastic
 - cross section
 - $\Sigma^{+}p$ elastic
 - proton up-down asymmetry
 - proton left-light asymmetry (should be carefully corrected by CATCH acceptance)
 - cross section for two decay modes (systematics check)
- $\pi^- p \rightarrow K^0 \Lambda$ reaction for Λp scattering
 - Important reaction to tag Λ beam with proton target

Summary

B01 : Hierarchy of matter investigated via strange hadron clusters

- **\square** ΣN interaction from Σp scattering
 - Quark Pauli effect in Σ^+ p channel
 - Systematic study of ΣN inteaction
- Σ^{-} p scattering experiment at J-PARC (1st run)
 - Σ p scattering physics run was partially carried out with high intensity (20 M/spill) π beam
 - Σ p elastic scattering and Σ p $\rightarrow \Lambda$ n conversion were clearly identified.
 - We could realize "modern" Yp scattering experiment.
- E40 2nd run from 2019 February
 - ~18 M Σ^{-} beam was accumulated.
 - ~4, 000 Σ^- p, Σ^- p → Λ n events are expected.
 - ~40 M Σ^{+} beam was accumulated
 - Analysis is on going. We are going to derive differential cross sections as soon as possible.