Experimental Approaches to Bridging Dynamics of Quark and Hadron Hierarchies

Kenta Shigaki

(Hiroshima U. 🌑 広島大学)

International Symposium on

Clustering as a Window on the Hierarchical Structure of Quantum Systems 23 January 2020, Beppu, Oita, Japan

Presentation Outline

physics via high energy nucleus collisions

• e.g. ALICE experiment at CERN LHC

exotic hadron and di-quark semi-hierarchy

- physics bridging quark and hadron hierarchies
- unique features in view of "cluster" innovative area
- experimental approaches
 - research project members
 - ALICE upgrade strategy/plan/progress/status
- possible seeds of collaboration across hierarchies
- summary and concluding remarks

Most Energetic Heavy Ion Collisions

- 5.0 TeV per nucleon-nucleon pair at CERN LHC
 - 25 times higher than at BNL RHIC in U.S.A.

design energy at 5.5 TeV in 2021

2020/01/23

<u>A Large Ion Collider Experiment</u>

<u>the</u> nucleus-nucleus collision experiment at LHC

	• 4 <mark>0</mark> c	countries	s ; 177 in :	stitutes; ~	1,900 me	mber	
	1	A Large Ion Collider Experiment				-	
		ALICE CC AS JANUARY 2018	LLABOR	ATION		ALICE	R.C.
m		5		And the second second	A CARLES		

Clusters & Hierarchies

ALICE Physics Outcome at a Glance

254 papers on refereed journals in 10 years

- as of beginning of this week
- including 2 Nature Physics, 81 PLB, 34 PRL
- 36 in last 12 months
- deconfined quark behavior in strong QCD field
- quarks interaction in strong QCD field
- QGP-like signatures in high-multiplicity p-p, p-Pb
- more exotic physics
 - e.g. chiral anomaly effects
 - ultra-intense vorticity and magnetic field

"Our" Presence in ALICE

- as of today (not inclusive)
 - collaboration board deputy chair (Oyama)
 - run coordinator (Gunji)
 - jet physics working group co-convener (Chujo)
 - EM calorimeter deputy project leader (Chujo)
 - muon forward tracker control/service work package co-convener (Shigaki)
- in the past (major ones only)
 - collaboration board deputy chair (Hamagaki)
 - low mass di-electron physics analysis group co-convener (Gunji)

2020/01/23

Research Project Members

- principal investigator Kenta SHIGAKI (Hiroshima)
- project PD Yorito YAMAGUCHI (Hiroshima)
 - new forward tracking detector
- co-investigator Hideki HAMAGAKI (Nagasaki IAS)
 - data handling scheme upgrade
- co-investigator Tatsuya CHUJO (Tsukuba)
 - grid computing core facility
- co-investigator Taku GUNJI (Tokyo)
 - main tracking detector upgrade
- research collaborator Maya SHIMOMURA (Nara Women's)
 - conducting experiment, physics analysis

Upgrades for Run 3 (2021–2024)

- new inner tracking system
 - 7 layers of MAPS silicon pixel detectors
 - precise measurement of displaced vertices
 - to separate charm/beauty mesons
- new TPC readout chambers
 - GEM technology with no gating grid
 - ~100 times higher data taking rate (50 kHz in Pb-Pb)
 - continuous readout without triggering
- Muon Forward Tracker (MFT)
 - integrated online/offline data handling (O^2)

Aufheben of e + µ Measurements

two interesting regimes of quark-gluon phase
 – exploration on QCD phase diagram

new opportunity via muons at LHC (and above)

- <u>not too forward</u> for "central" physics
- technically *forward enough* for muon measurement

広島大学

Muon Forward Tracker (2021-)

MFT Physics Goals at a Glance

separated open heavy flavors

- $D \rightarrow \mu$ $p_T > 0-1 \text{ GeV/c}$
- $B \rightarrow \mu$ $p_T > 2 \text{ GeV/c}$
 - $J/\psi p_T > 0 \text{ GeV/c}$
- separated quarkonia

– prompt/secondary J/ ψ , ψ (2S), Y(1S/2S/3S)

Muon Forward Tracker Design

- −z = 460−768 mm
- 0.4 m² of MAPS silicon pixel sensors

precise vertexing capability for forward muons
Pb-Pb ~50 kHz, *p-p* ~200 kHz

MFT Structure and Elements

chip (936)/ladder (280)/zone (80)/half plane (20) /half disk (10) + PS unit (2)/half MFT (2)/MFT (1)

13/19

2020/01/23 Experimental Approaches to Bridging Dynamics of Quark and Hadron Hierarchies

First Half MFT Assembly in 2019/10/

Motomi Oya (HU grad. student)

Yorito Yamaguchi (HU PD)

Upgrade Schedule in (2019–) 2020

detector components removed and coming back

2020/01/23 Experimental Approaches to Bridging Dynamics of Quark and Hadron Hierarchies

15/19

広島大学

Quick Look at Other Activities (1)

new GEM for time projection chamber upgrade

- installed after quality assurance and tests on site

- study for online space charge effect correction

Quick Look at Other Activities (2)

- ALICE computing grid Tier 2 at U. Tsukuba
 - to secure/enhance computing resource in Japan
 - toward run 3 (2021–)
 - 2019
 - 168 TB RAID added as a part of this research project
 - 10 Gbps fiber connection to SINET5 via Hepnet-J

- more worker nodes, storage, band width

2020/01/23

Across-Hierarchies Research Seeds

- exotic hadrons (and di-quark semi-hierarchy)
 - w/ theory group
 - cf. previous presentation by H. Hamagaki
 - high prospect in ALICE Run 3 from 2021/05
- hadronization mechanism; Y-N, Y-Y interaction
 - w/ nuclear physics experiment and theory groups
- perfect fluidity (discovered at RHIC)
 - w/ cold atom experiment groups
 - Iong standing dream, but little actual collaboration so far
 - workshops planned in 2020
 - more ideas, e.g. few body system production mechanism

Summary and Concluding Remarks

- deconfined quarks: most fundamental hierarchy
 - only by high energy nucleus-nucleus collisions
 - relevant to early universe evolution
- unique dynamics bridging quark-hadron hierarchies
 - quark coalescence (cf. color string fragmentation)
- ALICE at LHC exploring quark physics frontier
- preparation at peak toward upgraded runs (2021–)
 - x 100 higher rate for rare/hard-to-catch phenomena
- seeking new collaborative research possibilities
 - workshops planned in 2020; please join us!

