Hyperon-nucleon interaction in few- and many body systems

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

Clustering as a Window on the Hierarchical Structure of Quantum Systems, Beppu, Japan, January 23-24, 2020

・ 同 ト ・ 三 ト ・

- Pyperon-nucleon interaction in chiral effective field theory
- Hyperon properties in infinite nuclear matter
- 4 Three- and four-body systems
- Is the hypertriton more strongly bound?

個 とくき とくきと

Interaction of strange baryons

- $\wedge N$ and ΣN scattering
 - \rightarrow Role of SU(3) flavor symmetry
- H dibaryon
 - Jaffe (1977) \rightarrow deeply bound 6-quark state with I = 0, J = 0, S = -2
 - many experimental searches but no convincing signal
 - Lattice QCD (2010) \rightarrow evidence for a bound H dibaryon ($\Lambda\Lambda$)
- Few-body systems with hyperons: ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ...
 - \rightarrow Role of three-body forces

large charge symmetry breaking ${}^{4}_{\Lambda}H \leftrightarrow {}^{4}_{\Lambda}He$

- (Λ, Σ) hypernuclei and hyperons in nuclear matter
 - → very small spin-orbit splitting: weak spin-orbit force existence of Ξ hypernuclei repulsive ∑ nuclear potential
- implications for astrophysics
 - → stability/size of neutron stars (hyperon puzzle) softening of equation of state hyperon stars

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

role of SU(3) flavor symmetry

meson-exchange approach:

use NN and YN data + SU(3) flavor symmetry to fix all parameters \rightarrow make predictions for $\land \land$, $\equiv N$, ..., $\equiv \equiv$

NN: strongly fine-tuned system (shallow bound states, large scattering length)

strict application of SU(3) symmetry leads to deficiencies/artifacts in the YN sector

- resonances (Jülich YN model, 1989)
- deeply bound ∧ N states (Jülich 2004, several Nijmegen potentials)
- ΣN interaction with isospin I = 3/2 is attractive, while empirically the Σ -nuclear interaction is found to be repulsive
- \Rightarrow YN potentials too attractive, need short-range phenomenology

SU(3) chiral effective field theory (χ EFT):

- power counting (systematic improvement by going to higher order)
- two- and three-baryon forces can be derived in a consistent way
- SU(3) symmetry + SU(3) symmetry breaking emerge in a consistent way

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χ EFT à la Weinberg (1990) [up to NLO]

- degrees of freedom: octet baryons (N, Λ , Σ , Ξ), pseudoscalar mesons (π , K, η)
- pseudoscalar-meson exchanges similar to meson-exchange potentials

$$\vdash \vdash \lor \vdash \vdash \vdash$$

 short-distance dynamics remains unresolved – represented by contact terms (involve low-energy constants (LECs) that need to be fixed from data) (in meson-exchange: ρ, ω, K*, f₀(500), f₀(980), a₀(980), κ, Pomeron, Odderon, ...)

$$V_{B_{1}B_{2} \to B_{1}'B_{2}'}^{CT} = \tilde{C}_{\alpha} + C_{\alpha}(p'^{2} + p^{2}) \quad (C_{\beta}p'^{2}, C_{\gamma}p'p)$$

$$\alpha = {}^{1}S_{0}, {}^{3}S_{1}; \ \beta = {}^{3}S_{1} - {}^{3}D_{1}; \ \gamma = {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}, {}^{3}P_{2}$$

No. of LECs is limited by SU(3) flavor symmetry: 6 at LO + 22 at NLO (in total) [for NN, $\land N$, ΣN , $\land \land$, ΞN , ..., $\Xi\Xi$] 5 at LO + 5 at NLO (for S-waves; dominant for $\land N$ and ΣN scattering at low energies)

BB interaction in chiral effective field theory

NLO interaction from 2013

J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24

fix all *S*-wave LECs from a fit directly to available low-energy Λp and ΣN scattering data (\approx 36 data points) no recourse to information on *NN* interaction

only for P-waves information for NN scattering is used

 \Rightarrow excellent description of data is achieved ($\chi^2 \approx 16 - 17$)

However, the LECs of the YN potential could not be determined uniquely

correlations between the LO and NLO LECs are observed

NLO interaction from 2019

J.H., U.-G. Meißner, A. Nogga, arXiv:1906.11681

explore those correlations between the LO and NLO LECs

explore consequences for the YN interaction, for light hypernuclei, and for in-medium properties of the Λ and Σ hyperons

reduce correlations by taking over 2 (NLO) LECs from the NN sector, fixed from the 1S_0 and 3S_1 NN phase shifts

decision is somewhat arbitrary - but in line with the power counting up to NLO: SU(3) symmetry in the NLO LECs

SU(3) symmetry breaking in the LO LECs due to $m_{\pi}-m_{K}$ mass difference

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Coupled channels Lippmann-Schwinger Equation

$$T^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) = V^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''\rho''^2}{(2\pi)^3} V^{\nu'\nu'',J}_{\rho'\rho''}(\rho',\rho'') \frac{2\mu_{\rho''}}{p^2 - \rho''^2 + i\eta} T^{\nu''\nu,J}_{\rho''\rho}(\rho'',\rho)$$

 $\rho', \ \rho = \Lambda N, \ \Sigma N \quad (\Lambda\Lambda, \ \Xi N, \ \Lambda\Sigma, \ \Sigma\Sigma)$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in the LS equation is cut off with the regulator function:

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^4}$$

consider values $\Lambda = 500 - 650$ MeV [guided by NN, achieved χ^2]

ideally the regulator (Λ) dependence should be absorbed completely by the LECs in practice there is a residual regulator dependence (shown by bands below)

- tells us something about the convergence
- tells us something about the size of higher-order contributions

N integrated cross sections

NLO13: J.H., S. Petschauer, et al., NPA 915 (2013) 24 NLO19: J.H., U.-G. Meißner, A. Nogga, arXiv:1906.11681 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005 Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

data points included in the fit are represented by filled symbols!

ъ

イロト イポト イヨト イヨト

N integrated cross sections

NLO13: J.H., S. Petschauer, et al., NPA 915 (2013) 24 NLO19: J.H., U.-G. Meißner, A. Nogga, arXiv:1906.11681 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005 Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

イロト 不同 トイヨト イヨト

	NLO13	NLO19	Jülich '04	NSC97f	experiment*
∧ [MeV]	500 • • • 650	500 • • • 650			
$a_s^{\wedge p}$	-2.91 ••• -2.90	-2.91 ••• -2.90	-2.56	-2.51	$-1.8^{+2.3}_{-4.2}$
$a_t^{\wedge p}$	-1.61 • • • -1.51	-1.52 · · · -1.40	-1.66	-1.75	$-1.6^{+1.1}_{-0.8}$
a _s ^{Σ+p}	-3.60 · · · -3.46	-3.90 · · · -3.43	-4.71	-4.35	
$a_t^{\Sigma^+ p}$	0.49 • • • 0.48	0.48 • • • 0.42	0.29	-0.25	
χ ²	15.7 • • • 16.8	16.0 • • • 18.1	\approx 22	16.7	
(³ _∧ H) <i>E</i> _B	-2.30 · · · -2.33	-2.32 · · · -2.32	-2.27	-2.30	-2.354(50)

*G. Alexander et al., PR 173 (1968) 1452

Note: $\binom{3}{\Lambda}H$ E_B is used as additional constraint in EFT and Jülich '04

 Λp data alone do not allow to disentangle ${}^{1}S_{0}$ (s) and ${}^{3}S_{1}$ (t) contributions

<ロト < 回 > < 回 > < 回 > 、

Is there a difference between NLO13 and NLO19?

yes!

⇒ Coupling strength between the ΛN and ΣN channels ($V_{\Lambda N \leftrightarrow \Sigma N}$) is different can be best seen by switching off the channel coupling:

but ... recall ... the potential is not an observable!

$$\begin{split} V_{\Lambda N} \ (\text{NLO13}) \neq V_{\Lambda N} \ (\text{NLO19}), \ V_{\Lambda N \leftrightarrow \Sigma N} \ (\text{NLO13}) \neq V_{\Lambda N \leftrightarrow \Sigma N} \ (\text{NLO19}), \ \dots \\ \sigma_{\Lambda p} \ (\text{NLO13}) \cong \sigma_{\Lambda p} \ (\text{NLO19}), \ \sigma_{\Sigma^- p \to \Lambda n} \ (\text{NLO13}) \cong \sigma_{\Sigma^- p \to \Lambda n} \ (\text{NLO19}), \ \dots \end{split}$$

イロン 不得 とくほう 不良 とう

Consequences?

consequences for in-medium properties: $\Lambda N - \Sigma N$ coupling is suppressed for increasing no. of nucleons (dispersive effects; Pauli blocking effects) $V_{M}^{eff}(E) = V_{\Lambda N} + V_{\Lambda N \to \Sigma N} (E - H_0)^{-1} V_{\Sigma N \to \Lambda N}$

EFT: in consistent few- and many-body calculations, differences in the two-body potential are to be compensated by many-body forces (\rightarrow tool for estimating effects from three-body forces!)

Similarity renormalization group (SRG) transformation:

- Many-body approaches like the no-core shell model require soft effective interactions as input
- unitary transformation that preserves two-body observables (S.K. Bogner, R.J. Furnstahl, R.J. Perry, PRC 75 (2007) 061001)
- diagonalization of the NN interaction leads to induced 3- and many-body forces
- YN: diagonalization includes $\Lambda N \Sigma N$ decoupling \Rightarrow sizable induced YNN forces (R. Wirth, R. Roth, PRC 100 (2019) 044313)

\wedge and Σ in infinite nuclear matter

non-relativistic lowest order Brueckner theory (Bethe-Goldstone equation):

$$\begin{array}{lll} \langle \mathbf{Y}N|G_{YN}(\boldsymbol{\zeta})|\mathbf{Y}N\rangle &=& \langle \mathbf{Y}N|V|\mathbf{Y}N\rangle \\ &+& \sum_{\mathbf{Y}'N} \langle \mathbf{Y}N|V|\mathbf{Y}'N\rangle \langle \mathbf{Y}'N|\frac{Q}{\boldsymbol{\zeta}-H_0}|\mathbf{Y}'N\rangle \langle \mathbf{Y}'N|G_{YN}(\boldsymbol{\zeta})|\mathbf{Y}N\rangle \\ & \mathbf{Q} \ ... \ Pauli \ projection \ operator \\ & \boldsymbol{\zeta} = E_Y(p_Y) + E_N(p_N) \\ & E_\alpha(p_\alpha) = M_\alpha + \frac{p_\alpha^2}{2M_\alpha} + U_\alpha(p_\alpha), \quad \alpha = \Lambda, \Sigma, \ N \\ & U_\alpha \ ... \ single-particle \ potential \\ & U_Y(p_Y) = \int_{p_N \leq k_F} d^3p_N \langle \mathbf{Y}N|G_{YN}(\boldsymbol{\zeta}(U_Y))|\mathbf{Y}N\rangle \\ & B_Y(\infty) = -U_Y(p_Y = 0) \ - \ evaluated \ at \ saturation \ point \ of \ nuclear \ matter \end{array}$$

⇒ J.H., U.-G. Meißner, NPA 936 (2015) 29; S. Petschauer, et al., EPJA 52 (2016) 15 J.H., U.-G. Meißner, A. Nogga, arXiv:1906.11681

ヘロト 人間 とく ヨン 人 ヨトー

3

k_F dependence of $U_{\wedge}(p_{\wedge}=0)$

Bethe-Goldstone equation for coupled channels: only dispersive effects are included

contributions from three-body forces are missing

(S. Petschauer et al., NPA 957 (2017) 347): $\land NN$ force \rightarrow density-dependend effective $\land N$ interaction

ヘロン 人間 とくほ とくほう

Nuclear matter properties

 $U_Y(p_Y = 0)$ [in MeV] at saturation density, $k_F = 1.35 \text{ fm}^{-1}$ ($\rho_0 = 0.166 \text{ fm}^{-3}$)

	NLO13	NLO19	Jülich '04	NSC97f
۸ [MeV]	500 • • • 650	500 • • • 650		
		<i>U</i> ∧(0)		
$^{1}S_{0}$	-15.3 · · · -11.3	-12.5 • • • -11.1	-10.2	-14.6
${}^{3}S_{1} {}^{-3}D_{1}$	-14.6 • • • -12.5	-28.0 · · · -19.7	-36.3	-23.1
total	-28.3 · · · -21.6	-39.3 • • • -29.2	-51.2	-32.4
	<i>U</i> _Σ (0)			
$^{3}S_{1}$ - $^{3}D_{1}$ (3/2)	44.8 • • • 40.0	41.0 • • • 38.0	11.7	-6.4
total	19.4 • • • 14.1	21.6 • • • 14.1	-22.2	-16.1

"Empirical" value for the $U_{\Lambda}(0)$ in nuclear matter: $\approx -27 \dots -30$ MeV for the Σ : $\approx +30 \pm 20$ MeV

 ΣN (I=3/2): ${}^{3}S_{1} - {}^{3}D_{1}$: decisive for Σ properties in nuclear matter

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

3- and many-body forces in chiral EFT (E. Epelbaum)

different hierarchy of 3BFs for other counting schemes (Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)

イロト イポト イヨト イヨト

Three-nucleon forces: Explicit inclusion of the $\Delta(1232)$

• Explicit treatment of the Δ (Krebs, Gasparyan, Epelbaum, PRC 98 (2018) 014003):

LECs (from πN)	<i>C</i> 1	<i>C</i> ₂	<i>C</i> 3	<i>C</i> 4
Δ -less approach	-0.75	3.49	-4.77	3.34
Δ -full approach	-0.75	1.90	-1.78	1.50
Δ contribution	0	2.81	-2.81	1.40

- more natural size of LECs
- better convergence of EFT expansion (3NF from Δ(1232) appears at NLO!)
- applicability at higher energies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Three-body forces

• SU(3) χEFT 3BFs nominally at N²LO (S. Petschauer et al., PRC 93 (2016) 014001)

solve coupled channel (ΛN - ΣN) Faddeev-Yakubovsky equations: $\Rightarrow \Lambda NN$ "3BF" from Σ coupling is automatically included remaining 3BF expected to be small

• $\wedge NN$ 3BF via Σ^* excitation in SU(3) χ EFT with {10} baryons (NLO)

estimate $\land NN$ 3BF based on the Σ^* (1385) excitation (S. Petschauer et al., NPA 957 (2017) 347)

Status - hypertriton

$$^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + \rho + d, \ \rightarrow \pi^{-} + ^{3}\text{He}$$

benchmark: (M. Jurič et al., 1973): 0.13 ± 0.05 MeV STAR (J. Adam et al., arXiv:1904.10520) $\binom{3}{\Lambda}H + \frac{3}{\Lambda}\overline{H}$): $0.41 \pm 0.12 \pm 0.11$ MeV (separation energy $E_{\Lambda} = B_{\Lambda} - B_{d}$)

Hypertriton (Faddeev calculation by A. Nogga)

• $\Lambda p^{1}S_{0} / {}^{3}S_{1}$ scattering lengths are chosen so that ${}^{3}_{\Lambda}$ H is bound

- cutoff variation:
 - * $NNN \rightarrow$ is lower bound for magnitude of higher order contributions
 - * ΛNN correlation with χ^2 of YN interaction
 - \Rightarrow effect of three-body forces small?

イロト 不同 トイヨト イヨト

Status - ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He

large CSB in 0⁺ ($\Delta \approx 233$ keV), small CSB in 1⁺ ($\Delta \approx -83$ keV)

F. Schulz et al. [A1 Collaboration] (2016), T.O. Yamamoto et al. [J-PARC E13 Collaboration] (2015)

・ 同 ト ・ ヨ ト ・ ヨ ト

⁴He results (Faddeev-Yakubovsky – by A. Nogga)

- LO: unexpected small cutoff dependence in 0⁺ result
- possible effects of long ranged three-body forces?

э

Estimation of 3BFs based on NLO results

● ³H

(a) cutoff variation: ΔE_{Λ} (3BF) \leq 50 keV (b) "3BF" from ΛN - ΣN coupling:

> switch off ΛN - ΣN coupling in Faddeev-Yakubovsky equations: ΔE_{Λ} (3BF) \approx 10 keV expect smaller ΔE_{Λ} from Σ^* (1385) excitation

F 4 3 F

(c) ³H: 3NF ~
$$Q^3 |\langle V_{NN} \rangle|_{^3H} \sim 650 \text{ keV}$$

 $(|\langle V_{NN} \rangle|_{^3H} \sim 50 \text{ MeV}; Q \sim m_{\pi} / \Lambda_b; \Lambda_b \simeq 600 \text{ MeV})$
 $^3_{\Lambda}$ H: $|\langle V_{\Lambda N} \rangle|^3_{^3H} \sim 3 \text{ MeV} \rightarrow \Delta E_{\Lambda} (3BF) \approx Q^3 |\langle V_{\Lambda N} \rangle|^3_{^3H} \simeq 40 \text{ keV}$
Note: root-mean-square radius of $^3_{\Lambda}$ H: $\sqrt{\langle r^2 \rangle} \approx 5 \text{ fm}$
(deuteron: $\sqrt{\langle r^2 \rangle} \approx 2 \text{ fm})$
 \Rightarrow most of the time Λ and two Ns are outside of the range of a standard 3BF!
 $^4_{\Lambda}$ H. $^4_{\Lambda}$ He

(a) cutoff variation: ΔE_{Λ} (3BF) \approx 200 keV (0⁺) and \approx 300 keV (1⁺) (b) "3BF" from ΛN - ΣN coupling: ΔE_{Λ} (3BF) \approx 230 - 340 keV (0⁺), \approx 150 - 180 keV (1⁺)

 $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H(He) calculations with explicit inclusion of 3BFs are planned for the future

Charge symmetry breaking in the ΛN interaction

CSB due to $\Lambda - \Sigma^0$ mixing leads to a long-ranged contribution to the ΛN interaction (R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:

$$\begin{split} \langle \Sigma^0 | \delta M | \Lambda \rangle &= [M_{\Sigma^0} - M_{\Sigma^+} + M_p - M_n] / \sqrt{3} \\ \langle \pi^0 | \delta m^2 | \eta \rangle &= [m_{\pi^0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2] / \sqrt{3} \end{split}$$

$$f_{\Lambda\Lambda\pi} = \left[-2\frac{\langle \Sigma^{0}|\delta M|\Lambda\rangle}{M_{\Sigma^{0}} - M_{\Lambda}} + \frac{\langle \pi^{0}|\delta m^{2}|\eta\rangle}{m_{\eta}^{2} - m_{\pi^{0}}^{2}}\right] f_{\Lambda\Sigma\pi}$$

latest PDG mass values ⇒

$$f_{\Lambda\Lambda\pi} \approx (-0.0297 - 0.0106) f_{\Lambda\Sigma\pi} \approx -0.0403 f_{\Lambda\Sigma\pi}$$

ъ

イロト 不同 とくほ とくほ とう

CSB in ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He by Gazda and Gal

D. Gazda and A. Gal, NPA 954 (2016) 161: Assume that

$$V^{CSB}_{\Lambda N \to \Lambda N} = -2 \frac{\langle \Sigma^0 | \delta M | \Lambda \rangle}{M_{\Sigma^0} - M_{\Lambda}} \tau_{N_Z} \frac{1}{\sqrt{3}} V_{\Lambda N \to \Sigma N} \qquad \tau_{N_Z} = 1(p); \ -1(n)$$

use our LO YN interaction (calculations in the no-core shell model)

- splitting for the 1⁺ state somewhat too large
- fairly strong cutoff dependence
- \Rightarrow EFT: the latter signals that something is missing!

프 > 프

CSB in chiral EFT

CSB (CIB) in χ EFT: worked out for *pp*, *nn* (and *np*) scattering

Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362 J. Friar et al., PRC 68 (2003) 024003

LØ: Coulomb interaction, $m_{\pi0}$ - $m_{\pi\pm}$ in OPE NLØ: isospin breaking in $f_{NN\pi}$, leading-order contact terms

Gazda/Gal results: short-distance dynamics is relevant \rightarrow one has to account for that by appropriate contact terms (in line with the power counting)

NN ¹*S*₀: $a_{pp} - a_{nn} \approx 1.5$ fm mostly due to short-range forces (ρ^0 - ω mixing, a_1^0 - f_1 mixing)

calculations for NLO13 and NLO19 interactions are in progress!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Charge symmetry breaking - Andreas Nogga 2013

Contributions to the difference of ${}^4_{\Lambda} H\left(0^+\right) - {}^4_{\Lambda} He\left(0^+\right)$ separation energies

∧ [MeV]	450	500	550	600	650	700	Jülich 04	Nijm SC97	Nijm SC89	Expt.
∆T [keV]	44	50	52	51	46	40	0	47	132	-
$\Delta V_{\rm NN}$ [keV]	-3	-2	5	5	3	0	-31	-9	-9	-
$\Delta V_{\rm YN}$ [keV]	-11	-11	-11	-10	-8	-7	2	37	228	-
tot [keV]	30	37	46	46	41	33	-29	75	351	350
Ρ _{Σ-}	1.0%	1.1%	1.2%	1.2%	1.1%	0.9%	0.3%	1.0%	2.7%	-
P ₂₀	0.6%	0.6%	0.7%	0.7%	0.6%	0.5%	0.3%	0.5%	1.4%	-
Ρ _{Σ+}	0.1%	0.1%	0.2%	0.2%	0.2%	0.1%	0.3%	0.0%	0.1%	-

- kinetic energy contribution is driven by Σ component
- NN force contribution due to small deviation of Coulomb
- YN force contribution:
 - SC89 CSB is strong
 - NLO CSB is zero, only Coulomb acts (Σ component)

BUT outdated!

Status - hypertriton

$$^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + \rho + d, \ \rightarrow \pi^{-} + ^{3}\text{He}$$

benchmark: (M. Jurič et al., 1973): 0.13 ± 0.05 MeV STAR (J. Adam et al., arXiv:1904.10520) $\binom{3}{\Lambda}H + \frac{3}{\Lambda}\overline{H}$): $0.41 \pm 0.12 \pm 0.11$ MeV (separation energy $E_{\Lambda} = B_{\Lambda} - B_{d}$)

Binding energy of the hypertriton

spin dependence of Λp cross section

$$\sigma_{\Lambda\rho} \propto \frac{1}{4} |T^s_{\Lambda\rho}|^2 + \frac{3}{4} |T^t_{\Lambda\rho}|^2 \quad (\propto \frac{1}{4} \frac{a_s^2}{1 + a_s^2 k^2} + \frac{3}{4} \frac{a_t^2}{1 + a_t^2 k^2})$$

relevant spin-dependence for s-shell hypernuclei (Herndon & Tang, PR 153 (1967) 1091)

$$^{3}_{\Lambda}\mathrm{H}:$$
 $\tilde{V}_{\Lambda N} pprox rac{3}{4} V^{s}_{\Lambda N} + rac{1}{4} V^{t}_{\Lambda N}$

to retain $\sigma_{\Lambda p}$ and increase ${}^{3}_{\Lambda}$ H binding:

 \Rightarrow increase Λp interaction in the ¹S₀ state and reduce the one in ³S₁

can this be achieved? what happens for the other light hypernuclei?

what happens for the in-medium properties of the Λ and Σ ?

```
⇒ Hoai Le et al., PLB 801 (2020) 135189
```

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Correlation between a_s and ${}^3_{\Lambda}$ H separation energy

⇒ Hoai Le et al., PLB 801 (2020) 135189 (requires SU(3) symmetry breaking in the LO LECs for $\land N$, ΣN !) (otherwise $\Sigma^+ p$ channel is no longer satisfactorily described)

< ロ > < 同 > < 三 >

YN interaction	NLO19	Fit A	Fit B	Fit C	experiment
<mark>a</mark> ₅ [fm]	-2.91	-4.00	-4.50	-5.00	$-1.8^{+2.3}_{-4.2}$
<i>a</i> t [fm]	-1.41	-1.22	-1.15	-1.09	$-1.6^{+1.1}_{-0.8}$
χ^2 (total)	16.01	16.44	16.93	17.61	
χ^2 (\p only)	3.31	3.94	4.46	5.10	
<i>U</i> ∧(0) [MeV]	-32.6	-31.7	-31.3	-30.8	-27 · · · -30
<i>E</i> ∧ (³ _∧ H) [MeV]	0.10	0.28	0.37	0.44	$\textbf{0.13} \pm \textbf{0.05}$
					0.41 ± 0.12
E_{Λ} (⁴ _{ He(0 ⁺)}) [MeV]	1.46	1.77	1.86	1.92	$\textbf{2.39}\pm\textbf{0.03}$
E_{Λ} (⁴ _{ He(1 ⁺)) [MeV]	1.06	0.84	0.75	0.68	$\textbf{0.98} \pm \textbf{0.03}$
ΔE_{Λ} (⁴ _{\Lambda} He) [MeV]	0.41	0.93	1.11	1.24	1.406 ± 0.002

(NLO19 (600) is used as starting point)

<ロト < 回 > < 回 > < 回 > 、

Results for ⁷_ALi

calculation within the no-core shell model

- excitation spectrum of the ⁶Li core is not reproduced (3NFs missing!)
- qualitative agreement with experiment for all YN potentials
- none of the YN potentials agrees quantitatively
- \Rightarrow for $^7_\Lambda Li$ three-body forces are non-negligible

프 🗼 🗆 프

Hyperon-nucleon interaction constructed within chiral EFT

- Approach is based on a modified Weinberg power counting, analogous to applications for *NN* scattering
- The potential (contact terms, pseudoscalar-meson exchanges) is derived imposing SU(3)_f constraints
- S = -1: Excellent results at next-to-leading order (NLO) Λp , ΣN low-energy data are reproduced with a quality comparable to phenomenological models
- Strength of the $\Lambda N \cdot \Sigma N$ transition potential ($\Lambda \cdot \Sigma$ conversion) is not an observable $\Lambda \cdot \Sigma$ conversion and 3BFs are interrelated in few- and many body applications
- ${}^{A}_{\Lambda}H, {}^{A}_{\Lambda}H, {}^{A}_{\Lambda}He \dots$ effects of three-body forces should be small needs to be quantified/confirmed by explicit inclusion of 3BFs
- Study of charge-symmetry breaking in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ is under way
- nothing speaks against a somewhat larger binding energy of ${}^{3}_{\Lambda}$ H!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Backup slides

Johann Haidenbauer Hyperon-nucleon interaction

ヘロト 人間 とくほとく ほとう

æ

structure of contact terms for BB

SU(3) structure for scattering of two octet baryons \rightarrow

 $8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$

BB interaction can be given in terms of LECs corresponding to the *SU*(3)_{*t*} irreducible representations: C^1 , C^{8_a} , C^{8_s} , C^{10^*} , C^{10} , C^{27}

	Channel	I	V _α	V_{eta}	$V_{\beta ightarrow lpha}$
<i>S</i> = 0	$\textit{NN} \rightarrow \textit{NN}$	0	-	$C^{10^*}_{\beta}$	-
	NN ightarrow NN	1	C_{α}^{27}	_	-
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10}\left(9C_{\alpha}^{27}+C_{\alpha}^{8s} ight)$	$\frac{1}{2}\left(C_{\beta}^{8a}+C_{\beta}^{10^{*}}\right)$	- <i>C</i> ⁸ sa
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}\left(-C_{\alpha}^{27}+C_{\alpha}^{8s}\right)$	$\frac{1}{2}\left(-C_{\beta}^{8a}+C_{\beta}^{10^{*}}\right)$	-3 <i>C</i> ⁸ sa
					C ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$rac{1}{10}\left(C_{lpha}^{27}+9C_{lpha}^{8_s} ight)$	$rac{1}{2}\left(\mathcal{C}_{eta}^{\mathtt{8}_{a}}+\mathcal{C}_{eta}^{\mathtt{10}^{*}} ight)$	3 <i>C</i> ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	<u>3</u> 2	C_{α}^{27}	C^{10}_{β}	-

 $\alpha = {}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}, \ \ \beta = {}^{3}S_{1}, {}^{3}S_{1} - {}^{3}D_{1}, {}^{1}P_{1}$

No. of contact terms (LECs): limited by SU(3) symmetry

LO : 6 $[2(NN, \Xi\Xi) + 3(YN, \XiY) + 1(YY)]$ NLO: 22 $[7(NN, \Xi\Xi) + 11(YN, \XiY) + 4(YY)]$

(No. of spin-isospin channels in NN+YN: 10 S = -2, -3, -4; -4; -27) (B) (NO. et al. (NO

Charge symmetry breakinig in ΛN

Dalitz, von Hippel (1964)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

Correlation function for Λp

ALICE Collaboration (S. Acharya al., PRC 99 (2019) 024001): pp at $\sqrt{s} = 7$ TeV $R = 1.125 \pm 0.018$ fm, $\lambda = 0.4713$ $[C(k) \rightarrow 1 + \lambda(C(k) - 1)]$ spin average: $|\psi(k, r)|^2 = \frac{1}{4} |\psi_{(1S_0)}(k, r)|^2 + \frac{3}{4} |\psi_{(3S_1)}(k, r)|^2$

cusp at the ΣN threshold comes from $\psi_{\Sigma N-\Lambda p} {}^3S_1 \rightarrow {}^3S_1$ and/or ${}^3D_1 \rightarrow {}^3S_1$ components of the wave function their weights ω_{β} are free parameters!

イロン 不得 とくほ とくほ とうほ

Selected results for S = -2

EN: Comparison with HAL QCD results

HAL QCD Collaboration, from K. Sasaki's talk at *Lattice2017*, Granada, Spain results are for different sink-source time-separations *t*

프 🖌 🛪 프 🕨

 $U_{\Xi}(p_{\Xi} = 0)$ [in MeV] at saturation density, $k_F = 1.35 \text{ fm}^{-1}$ ($\rho_0 = 0.166 \text{ fm}^{-3}$)

	EFT NLO (2019)	EFT NLO (2016)	ESC08c	fss2
<mark>∧</mark> [MeV]	500 · · · 650	500 · · · 650		
<i>U</i> _Ξ (0)	-5.53.8	22.4 • • • 27.7	-7.0	-1.5

"Canonical" value for the depth of the \equiv single-particle potential: ≈ -15 MeV

Nijmegen ESC08c: M.M Nagels, T.A. Rijken, Y. Yamamoto, arXiv:1504:02634

Quark model fss2: Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439 (U₌ results from M. Kohno, S. Hashimoto, Prog. Theor. Phys. 123 (2010) 157)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Shell model: role of the spin-dependence of the $\wedge N$ potential for the binding energies of s-shell hypernuclei

$${}^{3}_{\Lambda} \mathrm{H}: \quad \tilde{V}_{\Lambda N} \approx \frac{3}{4} V^{s}_{\Lambda N} + \frac{1}{4} V^{t}_{\Lambda N}$$

$${}^{4}_{\Lambda} \mathrm{He} (0^{+}): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{2} V^{s}_{\Lambda N} + \frac{1}{2} V^{t}_{\Lambda N}$$

$${}^{4}_{\Lambda} \mathrm{He} (1^{+}): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{6} V^{s}_{\Lambda N} + \frac{5}{6} V^{t}_{\Lambda N}$$

$${}^{5}_{\Lambda} \mathrm{He}: \quad \tilde{V}_{\Lambda N} \approx \frac{1}{4} V^{s}_{\Lambda N} + \frac{3}{4} V^{t}_{\Lambda N}$$

$$\sigma_{\Lambda P} = \frac{1}{4} |f^{s}_{\Lambda P}|^{2} + \frac{3}{4} |f^{t}_{\Lambda P}|^{2}$$

recall: we use different spin-dependence of $\sigma_{\Lambda p}$ and $B(^{3}_{\Lambda}H)$ to fix the relative strength of the ¹S₀ and ³S₁ ΛN interactions

イロン 不得 とくほ とくほ とうほ

Three-body forces

SU(3) χ EFT 3BFs nominally at N²LO (S. Petschauer et al., PRC 93 (2016) 014001)

solve coupled channel ($\Lambda N \cdot \Sigma N$) Faddeev-Yakubovsky equations: $\Rightarrow \Lambda NN$ "3BF" from Σ coupling is automatically included remaining 3BF much smaller than in #EFT

estimate ∧NN 3BF based on the ∑*(1385) excitation (S. Petschauer et al., NPA 957 (2017) 347)

density dependent effective YN interaction

three-body force (nominally at N²LO):

density dependent effective YN interaction:

close two baryon lines by sum over occupied states within the Fermi sea arising 3BF LECs can be constrained by resonance saturation (via decuplet baryons)

J.W. Holt, N. Kaiser, W. Weise, PRC 81 (2010) 064009 (for *NNN*) S. Petschauer et al., NPA 957 (2017) 347 (for *∧NN*)

イロト イポト イヨト イヨト

Results for Λ at larger density ρ

⇒ χ EFT: less attractive or even repulsive for $\rho > \rho_0$ neutron stars: hyperons appear at higher density impact on the so-called hyperon puzzle

イロト 不同 とくほ とくほ とう