Investigation of Baryon Interactions with Strangeness (Group-B01)

2020/1/23 T.Takahashi (KEK-IPNS)

Contents

- Overview of Group-B01 researches
- Subjects and status of experiments at J-PARC
 - E40: Σp scattering
 - E42: Search for *H*-dibaryon
 - E03: X-ray spectroscopy of Ξ -atom
- Summary

Cluseters of strange hadrons for investigating hierarchical structure of matter (Group-B01)

PI: H.Tamura (Tohoku U.), CI: T.Nagae (Kyoto U.), T.Takahashi (KEK), K.Miwa(Tohoku U.)

1. Origin of nuclear force $NN \rightarrow YN$ and YY

 $\Sigma \mathbf{p}$, $\Lambda \mathbf{p}$ scattering exp.

Search for *H*-dibaryon

Search for Ξ⁻n bound nuclei ΞN int. & Ξ-nuclei

2. Meson-Baryon molecule

6q

Λ(1405)="K⁻p" Strucure of "K⁻ppp" nucleus K⁻pK⁻p nucleus

3. In-medium baryon properties

Baryon Baryon interaction by Lattice QCD

<u>J-PARC E40: Σ^{\pm} p Scattering Experiment (Miwa et al.)</u>

History of E40: Σ -proton scattering exp.

- Feb. 2018
 - Detector Commissioning
- June 2018
 - Σ^{-} p 1st production run (~2 days)
- Feb. Apr. 2019
 - Σ^- p 2nd production run (~20 days) done
 - Σ^+ p 1st production run (~13 days)

terminated due to Acc. trouble

- Feb. 2020
 - Σ^+p 2nd production run (~14 days) to be completed

Kinematical matching

Slide by K. Miwa

h1 **p** (direction, E) 800E Entries 15631 p 0.117 Mean $\Sigma^- p \rightarrow \Sigma^- p$ 29.09 Std Dev 700 $_{600} \equiv \Sigma^{-} p$ scattering scattering angle 500 ~4500 event preliminary 400 π 300 `К+ 200 100 direction -100 20 80 -60 -20 40 60 100 $\Delta E_{\Sigma-p}$ (MeV) $\pi^{\text{direction}}$ π 14112 Entries **p** (direction, E) Mean 0.12 600 0.1237 Std Dev $\Sigma^- p \rightarrow \Lambda n$ $\Sigma^- p \rightarrow \Lambda n$ 500 400 E~2400 event n 300 π K+ 200 preliminary 100 J month -0.5 Calorimeter 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 $\Delta p_{\Sigma\text{-}p\text{-}>\Lambda n}$ (MeV)

H-dibaryon

• 6 quarks (uuddss) system with I=0, $J^{\pi}=0^+$

$$BB^{(1)} = H = -\sqrt{\frac{1}{8}}\Lambda\Lambda + \sqrt{\frac{3}{8}}\Sigma\Sigma + \sqrt{\frac{4}{8}}\Xi N$$

- Deeply bound state was predicted by R.L.Jaffe in 1977
- → Deeply bound state was rejected by NAGARA event ($^{6}_{\Lambda\Lambda}$ He) $M_{H} \ge 2M_{\Lambda} 7.25$ MeV
- lattice QCD simulation at almost physical point
 - exist around near ΞN threshold !?
- No experimental evidence

Lattice QCD calculation for H dibaryon

HAL QCD

arXiv:1912.08630v1 18-Dec-2019

mass

fit range

¹¹ S ₂ interaction			Baryon	$[m_{_B}/a]$	[GeV]	[t/a]
125 100 75	V ⁽¹¹ S ₀) t/a=11 t/a=12 t/a=13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c} N \\ \Lambda \\ \Sigma \\ \Xi \end{array}$	$\begin{array}{c} 0.40949(78)(52)\\ 0.48856(49)(9)\\ 0.52365(37)(64)\\ 0.58087(51)(3)\end{array}$	$\begin{array}{c} 0.9553(18)(12)(74)\\ 1.1398(11)(2)(88)\\ 1.2217(9)(15)(94)\\ 1.3552(12)(1)(105) \end{array}$	13 - 17 15 - 20 15 - 20 20 - 25
N MeV N	weakly attractive	50 25 0 25 50 50 50 50 50 50 50 50 50 50 50 50 50		Weak 三N	$\rightarrow \Lambda \Lambda$ conve	ersion
125 100 75 50 25 0 -25 50 -25 50 -25 50 -25 50 -25 50 -25 50 0 0	(a) (a) (b) (c) (c)	(b) $V^{NE}(11S_0)$ $U_{a=11}$ $U_{a=12}$ $U_{a=13}$ $U_{a=$	Ξ	N (quasi) bound s	tates?

Figure 1: The S-wave coupled-channel $\Lambda\Lambda$ -N Ξ potential in ¹¹S₀. The $V^{\Lambda\Lambda}$, $V_{N\Xi}^{\Lambda\Lambda}$, $V_{\Lambda\Lambda}^{N\Xi}$ and $V^{N\Xi}$ potentials are shown in (a), (b), (c) and (d), respectively.

Lattice QCD vs ALICE data

Talk by Valentina Mantovani Sarti (TUM) at MESON2018 (June 8, 2018)

Past experiment for H-dibaryon

Belle data: *Hint of H dibaryon?*

ΛΛ invariant mass
from Y(1s) and Y(2s) decay

No peak was observed

"pp"(K⁻, K⁺)∧∧ reaction with SciFi active target (CH₂)

KEK E522:

J-PARC E42 experiment

H-dibaryon search by using "pp"(K⁻, K⁺)*H* reaction with diamond target

Sensitivity

- E42 has a good sensitivity over a broad range of the *H* mass from the bound to unbound regions above the $\Xi^- p$ mass threshold.
- Statistical significance $S/\sqrt{S + B}$ with H-production cross section

as a function of the *H* mass.

From 29th J-PARC PAC by J.K.Ahn

E42: Schedule at K1.8 of J-PARC HEF

- Feb. Mar. 2020 E40 physics run
 - Parasite test of TPC detector
- Apr. Oct. 2020 Setup KURAMA spectromter
 - Excitation test of H.S. magnet with KURAMA magnet
- Nov. 2020 E03 physics run
 - KURAMA detector (Water Cherenkov) & trigger study
- Dec.2020 Feb.2021 H.S. installation
- Mar. Apr. 2021 E42 comm. + physics run

$\Xi \rm N$ interaction & $\Xi \text{-}\rm Nuclei$ Several event-samples on Ξ^{-} - $^{14}\rm N$ system

4

- Multiple candidates of Ξ hypernucleus has been detected.
- The errors for neutron emission case are under validation.
- These events suggest multiple bound states of Ξ^- in the Ξ^- + ¹⁴N system.

Outline of the E03 experiment

• World first measurement of X-ray from Ξ^- atom

 \rightarrow Direct information on the Ξ -nucleus(A) optical potential

- First step of systematic measurements to obtain 10% statistics of the original proposal.
 - ightarrow Establishing experimental method in this experiment

Method:

- Produce Ξ^- by the Fe(K^-, K^+) reaction

Magnetic spectrometers for K^{\pm}

- Stop Ξ^- in the target $ightarrow \Xi^-$ atom

Dense Fe target

- Measure X rays

Ge detectors

Level scheme of Fe Ξ^- atom

n=7→6 : X-ray energy = 172 keV ← small shift/width

n=6→5 : X-ray energy = ~286 keV ← finite shift/width due to ΞN interaction expected shift ~ 4keV, width(Γ) ~ 4keV (the erection energy energy energy = ~24.2i MeV)

(theoretical case study with W.S. pot. of -24-3i MeV)

Level scheme of Fe Ξ^- atom

Level scheme of Fe Ξ^- atom

Phase-1 Physics run in Nov. 2020

Summary

- Group-B01 researches aim to investigate the origin of nuclear force, meson-baryon molecule, and hadron properties in medium, by adding strangeness (s-quark).
- Three experiments to investigate baryon-baryon interactions; YN scattering, H-dibaryon, and Ξ-atom, are in progress or carried out soon at J-PARC.