

Experiments with large mass-

Kyoto University

F. Schäfer, N. Mizukami, S. Koibuchi, P. Yu, A. Bouscal and Y. Takahashi

CLUSHIQ2020, Beppu – 2020/01/23-24

Summary

Large mass-imbalance ultracold atom systems in mixed dimensions as gateway to new Efimov clusters states

Observed the formation of 2D-3D Fermi-Bose mixed dimensional system

FS, N. Mizukami, P. Yu, S. Koibuchi, A. Bouscal, Y. Takahashi, Phys. Rev. A 98, 051602(R) 2018.

Demonstrated and characterized first ⁷Li-¹⁷³Yb quantum degenerate mixture

Work towards a new mixture in mixed dimensions with tunable interactions

Outline

- Introduction
 - Efimov cluster states
 - p-wave superfluidity in mixed dimensions
- Proof-of-principle experiments
 - Formation of ⁷Li-Yb quantum degenerate mixtures
 - 2D-3D and 0D-3D mixed dimensional systems
- A large mass-imbalance quantum mixture with tunable interactions
 - Physics of Er-Li atomic mixtures
 - State of the experiment
- Summary (again)

Volume 33B, number 8

PHYSICS LETTERS

21 December 1970

wikipedia.org

ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES IN A THREE-BODY SYSTEM

V. EFIMOV

A.F.Ioffe Physico-Technical Institute, Leningrad, USSR

Received 20 October 1970

Resonant two-body forces are shown to give rise to a series of levels in three-particle systems. The number of such levels may be very large. Possibility of the existence of such levels in systems of three α -particles (¹²C nucleus) and three nucleons (³H) is discussed.

- Efimov (PhD 1966) studied the three-body problem in nuclear systems
- Wanted to explain, e.g., triton (p-n-n) and Hoyle state of ${}^{12}C$
- Found stabilization of two nearly binding particles by third particle
- Difficult to test in (fermionic) nuclear systems

- Basic ingredients (three identical bosons in 3D)
 - Short-range interactions (potential decays faster than $1/r^3$)
 - Near-resonant two-body *s*-wave attractive interaction
- Universality of low-energy physics
 - Irrelavance of interaction details at low energy (large wave function)
 - Efimov physics occurs at separations larger than interaction range
- Efimov effect is ubiquitous to many physical systems
 - Nuclear physics (halo nuclei)
 - High-energy physics (QCD triton)
 - Condensed matter (magnons)
 - Molecular physics (⁴He₃ molecule)
 - Atomic physics (¹³³Cs, ³⁹K, ⁶Li, ⁴¹K-⁸⁷Rb)

Review by P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

Efimov cluster states – scaling

- Infinite number of three-body bound states
- Scaling factor $\lambda_0 \approx 22.694$

• Energy scaling
$$E/(\lambda_0)^{2n}$$

- Deviation of ground-state and first excited-state trimer from universal spectrum
- Difficulty to observe series of Efimov trimers due to large scaling factor

P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

Efimov physics beyond three identical bosons

P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

CLUSHIQ2020 – 23-24 January 2020

Efimov physics beyond three dimensions – mixed dimensions

P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

CLUSHIQ2020 - 23-24 January 2020

Previous experiments on Efimov physics with ultracold atoms

Single species experiments

- 2002 Grimm (Innsbruck): ¹³³Cs, ground Efimov state
- 2009 Inguscio (Florence): ³⁹K, first two Efimov states
- 2009 Hulet (Rice): ⁷Li, first two Efimov states
- 2014 Grimm (Innsbruck): ¹³³Cs, second Efimov trimer

Mixture experiments

- 2013 Jin (JILA): ⁸⁷Rb(B)-⁴⁰K(F)⁸⁷Rb(B) loss coefficient peak
- 2014 Chin (Chicago) & Weidemüller (Heidelberg): ⁶Li(F)¹³³Cs(B)¹³³Cs(B), series of three Efimov bound states
- 2015 Inouye (Tokyo): ⁸⁷Rb(B)-⁴¹K(B)⁸⁷Rb(B) loss coefficient peak

Missing experimental confirmation

• Effect of mixed dimensions (first 2D-3D experiments at LENS, 2010)

Bonus fact: p-wave superfluidity

- 1972: Discovery of superfluidity in ³He by Lee, Osheroff and Richardson (Nobel Prize 1996)
- ³He is a fermion \rightarrow no s-wave coupling possible
- Superfluidity caused by p-wave Cooper pairs

wikipedia.org

It is hard to find a well controllable system to study p-wave superfluidity.

P-wave superfluidity with ultracold atoms in mixed dimensions

- 2009 Nishida: 2D Fermi gas within 3D other species Fermi gas
- 2016 Wu, Bruun: 2D Fermi gas embedded in 3D BEC
- 2017, 2018: Further refinements and detailed calculations for 7Li-173Yb
- Mechanism: Increased critical temperature due to Fermion pairing via Bogoliubov phonon mediated interactions

Elements for a large mass-imbalance ultracold mixture

http://sciencenotes.org

CLUSHIQ2020 – 23-24 January 2020

Mass ratio 173 Yb (boson) : 7 Li (fermion) = 24.7 \gg 13.6

- Mass ratio > 13.6 \rightarrow Possibility of Efimov states involving fermions
- Expected scaling ratio for 173 Yb- 173 Yb- 7 Li trimer: $\lambda_{_0} \approx 8.9 \ll 22.7$
- Also possible: all bosonic case, 174 Yb- 174 Yb- 7 Li ightarrow $\lambda_{_0}$ pprox 4.4

Further advantage of large mass imbalanced mixture:

• Effective depth of optical lattice

 $\frac{V_{\text{lat}}}{E_R} = \frac{2 \, m}{\hbar^2 k^2} \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} \frac{2P}{\pi \omega_0^2}$

- ► Heavy Yb localized in optical lattice
- ► Light Li is still unconstrained in 3D

The Kyoto Li-Yb mixture machine

CLUSHIQ2020 – 23-24 January 2020

⁷Li-Yb in mixed dimensions

- Create 2D fermionic system in 3D bosonic
- Use optical lattice ($\lambda = 532$ nm) to localize species selectively only Yb
- Typical lattice depths: $U_{Yb} = 15 E_R^{Yb}$ $U_{Li} = 0.7 E_R^{Li}$ $E_R^{Yb,Li} = \frac{\hbar^2 k_{532}}{2 m_{Yb,Li}}$

- Periodic modulation of lattice depth to cause ¹⁷³Yb interband excitations
- Good agreement with expected band structure for $U_{\rm Yb} = 14 \, E_R^{\rm Yb}$

Yb intercombination line high-resolution spectroscopy

• Use narrow-linewidth transition to probe Yb Mott-Insulator structure

- Sensitive tool to detect changes in the Yb energy landscape
 - intraspecies: energy shift from multiply occupied lattice sites
 - interspecies: differences in Li-Yb scattering lengths

- Mott-Insulator structure of ¹⁷⁴Yb clearly resolved
- Presence of ⁷Li does not significantly disturb Yb Mott-Insulator state
- ► Only very weak Li-Yb interspecies interactions

• (Some) requirements for both Efimov and p-wave superfluidity physics

Requirement	State of the art
⁷ Li- ¹⁷³ Yb Fermi-Bose mixture	done 🗸
2D-3D mixed dimensional system	done 🗸
Spin polarized fermions	demonstrated before 🗸
Fermion temperature $< 0.1 T_{\rm F}$	not impossible
Tunable interspecies scattering length	very difficult for Li-Yb 🗡

• Problem: No (usable) Li-Yb Feshbach resonances found or predicted

New mixtures

• Need mixed dimensional system with tunable interspecies interactions

Predicted Lithium-Erbium Feshbach spectrum

• Detailed calculations by González-Martínez and Żuchowski

Expect that also Bose-Fermi system has Feshbach resonances

CLUSHIQ2020 - 23-24 January 2020

The Kyoto Erbium-Ytterbium-Lithium experiment

• We still have plans for Li-Yb \rightarrow add Er to create a three-species experiment

Status of the experiment upgrade

- Installation of new triple-species oven completed
- ⁷Li-¹⁷⁴Yb and ⁶Li-¹⁷⁴Yb quantum degenerate mixtures recovered
- Preparation of laser systems (401 nm, 583 nm) for Er completed
- Currently optimizing trapping and cooling of the ¹⁶⁸Er atoms

MOT of ¹⁶⁸Er atoms

15 mm

Successful trapping of Er atoms in MOT (magneto-optical trap)

Towards ultracold ¹⁶⁸Er atoms

CLUSHIQ2020 – 23-24 January 2020

Summary

Large mass-imbalance ultracold atom systems in mixed dimensions as gateway to new Efimov clusters states

Observed the formation of 2D-3D Fermi-Bose mixed dimensional system

FS, N. Mizukami, P. Yu, S. Koibuchi, A. Bouscal, Y. Takahashi, Phys. Rev. A 98, 051602(R) 2018.

Demonstrated and characterized first ⁷Li-¹⁷³Yb quantum degenerate mixture

Work towards a new mixture in mixed dimensions with tunable interactions