Baryon spectroscopy with secondary hadronic beams at J-PARC

K. Shirotori for the E50/E31 collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

International symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2020)

23rd January 2020

Contents

• Motivations

- Study of excited states: Effective degree of freedoms of hadron
- Spectroscopy of charmed baryon and hyperon at J-PARC
- High-p beam line and multi-purpose spectrometer
- Study of hadron molecule state: $\Lambda(1405)$
 - J-PARC E31 experiment
- Summary

Motivations

Investigations of excited states Charmed baryon and hyperon spectroscopy

How hadrons are originated by quark and gluon ?

Understand hadrons
by new effective degree of freedom
⇒ Semi-Hierarchies
between Hadron and Quark • Gluon (A02)
* J-PARC & LEPS2 projects

- Constituent quark
- Diquark

q-q

Hadron molecule

Hadron molecule

Excited states: Observation of exotic hadrons

*****Excited states: Rich properties

 \Rightarrow Mass, width, decay branching ratio, spin and parity

from new effective degree of freedoms extended to ordinary constituent quark model

Excited states: Observation of exotic hadrons

Excited states and effective degree of freedoms 3q baryon Meson baryon Pentaquark (Molecule) (Multi quark) \overline{q} $\overline{q$

- Properties of excited states ? (Mass, Γ , J^P)
- Role of effective degree of freedoms ? (Systematics)
- How (where) configurations emerge ? (Threshold region ...)
- Understand whole hadron properties universally ?

- Properties of excited states ? (Mass, Γ , J^P)
- Role of effective degree of freedoms ? (Systematics)
- How (where) configurations emerge ? (Threshold region ...)
- Understand whole hadron properties universally ?

Excited states with heavy quark: Diquark

"Excited mode": λ and ρ modes in heavy baryon excited states (*q*-*q* + Q system) \Rightarrow Diquark correlation: *q*-*q* isolated and developed

Charmed baryon spectroscopy experiment: J-PARC E50* $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$ reaction @ 20 GeV/c• High-intensity π^- beam: 6.0×10^7 /spill• Production rates & Decay branching ratiosLight quark baryon ρ mode
Excitation of $q \cdot q$ ω

Production rates by hadronic reaction

- π⁻ + p → Y_c^{*+} + D^{*-} reaction: Missing mass method
 * Production rates ⇔ Internal structure of excited states
 ⇒ Selective production of corrective motion: λ mode
- * Production cross section
 ⇒ Overlap of wave function
 * charm and q-q (spectator)

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

Prog. Theor. Exp. Phys. 103D01 (2014).

Decay property

- Decay measurement: $\Gamma_{\pi\Sigma c} \Leftrightarrow \Gamma_{ND}$
 - $\pi^{-}+\Sigma_{c}^{++}, \pi^{+}+\Sigma_{c}^{0}$
 - $\mathbf{p} + \mathbf{D}^0$

 \Rightarrow Absolute value of branching ratio by missing mass method

• Compliment study with high-energy experiments

Spectroscopy with heavy quark

- Clear distinction by separating effects from one quark
 - Systematic study
- Charmed baryon spectroscopy: To understand role of diquark correlation
 - Dynamical information: Production rates & Decay branching ratios

Excitation spectrum: *q*-*q* + **Q** system

Excitation spectrum: *q*-*q* + **Q** system

Strange baryon systems

- $\Lambda^* / \Sigma^* : \boldsymbol{q} \boldsymbol{q} + \boldsymbol{Q}$ system
- \Rightarrow Systematics with charmed baryon
 - Production rate: λ and ρ selection
 - Decay branching ratio
- Ξ^* : **q** + **QQ** system
- \Rightarrow Excitation with two heavy quarks
 - Interchange of λ and ρ modes
- Ω^* : **QQQ** system
- \Rightarrow Same weight of three heavy quarks
- * Spectroscopy by high-momentum K⁻ beam
 - Several GeV/c beam
 - Poor data of Ξ and Ω states
 - Exotic states
- \Rightarrow **Systematic** measurement is necessary.

 Λ^* / Σ^*

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 10^7 Hz π (> 10^5 Hz K/p_{bar}) up to 20 GeV/c
 - Unseparated beam: π/K/p_{bar}
- High-resolution beam: $\Delta p/p \sim 0.1\%$ (rms)
 - Momentum dispersive optics method

Charmed baryon spectrometer

Hadron molecular state

Study of Λ(1405) J-PARC E31 experiment at K1.8BR

Experimental results: Cross section of $\pi\Sigma$ modes

***** I = 0 amplitude seems dominant.

To deduce scattering amplitude and extract pole position

$$F_{res}(M_{\pi\Sigma}) \sim \left| \int_0^\infty dq_{N_2}^3 T_1 \frac{1}{E_{\overline{K}} - E_{\overline{K}}(q_{\overline{K}}) + i\epsilon} \Phi_d(q_{N_2}) \right|^2, q_{\overline{K}} + q_{N_2} = q_{\pi\Sigma}$$

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim \left|T_2^I(\overline{K}N \to \pi\Sigma)\right|^2 F_{res}(M_{\pi\Sigma})$$

Pole at
$$(1417^{+6}_{-7} - i27^{+5}_{-9})$$
 MeV/ c^2

***** Seems consistent with higher pole by the Chiral Unitary Model based calculations

Related subjects and experiments

- High-p beam line: Beam delivered from 2020 February !
 - Measurement of mass modification of φ meson: J-PARC E16
- $\Rightarrow 2^{ndary}$ beam line and heavy baryon spectroscopy (charm, $\Xi \& \Omega)$
- Studies of $\Lambda(1405)$
 - K⁻ beam @ J-PARC: Production angle dependence
 - High-p beam @ J-PARC: Quark counting rule
 - γ beam @ LEPS2: Polarized beam
- K⁻pp state
 - Deeply bound state due to help by strong attraction of $K_{bar}N(\Lambda(1405))$
 - Production by K⁻ and γ beam: Experiments are planned at J-PARC & LEPS2.
- H-Dibaryon search: J-PARC E42
 - By (K⁻, K⁺) reaction on nuclear target
- $\pi N \rightarrow \pi \pi N$ experiment: J-PARC E45
 - Basics data for N^*/Δ^* resonances

*Hadron spectroscopy By Hadronic beams @ J-PARC and Photon beam @ LEPS, ELPH

Summary

- Motivations
 - Study of excited states: Effective degree of freedoms of hadron
 - Diquark correlation and hadron molecular
 - Spectroscopy of charmed baryon and hyperon at J-PARC
 - To understand role of diquark correlation
 - by dynamical information: Production rates & Decay branching ratios
 - Systematic measurement: Charm, strangeness = -1, -2, -3
- High-p beam line and multi-purpose spectrometer
 - Beam line from Feb. $2020 \Rightarrow 2^{ndary}$ beam for hadron spectroscopy
 - Spectrometer system for many physics reactions: Trigger-less DAQ
- Study of hadron molecule state: $\Lambda(1405)$
 - Cross section of all $\pi\Sigma$ modes

 \Rightarrow K_{bar}N scattering amplitude to extract pole \Rightarrow (1417⁺⁶₋₇ - *i*27⁺⁵₋₉) MeV/*c*²

• Related studies for hadron physics *Hadronic and photon beams @ J-PARC, LEPS, ELPH