Short-Range Correlations and the Quarks Within

Or Hen (MIT)

Hen Lab

Laboratory for Nuclear Science @

International Symposium on Clustering, January 24th 2020.

Short-Range Correlations (SRC)

Nucleon pairs that are close together in the nucleus

high *relative* and low *c.m.* momentum compared to k_F

<u>r-space</u>

Nucleon pairs that are close together in the nucleus

Why SRC?

Required for a high-resolution, first principle, description of nuclear systems & processes.

NN interaction from QCD & QCD in nuclei

High-density systems

High-q processes (e.g. $0\nu\beta\beta$ decay)

Today: SRCs Across Scales

Today: SRCs Across Scales

2018-20 SRC Publications:

- Nature, In-Print (2020)
- Nature 566, 354 (2019)
- Nature 560, 617 (2018)
- PRL 122, 172502 (2019)
- PRL 121, 092501 (2018)
- Phys. Lett. B 800, 135110 (2019)
- Phys. Lett. B 797, 134890 (2019)
- Phys. Lett. B 797, 134792 (2019)
- Phys. Lett. B 791, 242 (2019)
- Phys. Lett. B 793, 360 (2019)
- Phys. Lett. B 785, 304 (2018)
- Phys. Lett. B 780, 211 (2018)
- Chin Phys. C 42, 064105 (2018) arXiv: 1908.02223; 1907.03658

p_{miss} [GeV/c]

Looking For Correlations

Wiringa, PRC (2014); Carlson, RMP (2015); ...

Breakup the pair => Detect <u>both</u> nucleons

Breakup the pair => Detect <u>both</u> nucleons => <u>Reconstruct</u> 'initial' state

Jefferson-Lab National Accelerator Facility

- Virginia, USA.
- Electron beam. [12 GeV; ~80 uA; polarized]
- 4 experimental halls.
- Approved program for coming decade; Leading to EIC.

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

Low Pair C.M. Motion

Cohen, PRL (2018).

Consistent \w combining two mean-field nucleons

np pairs predominate

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003); <u>Review:</u> Hen RMP (2017);

Also seen in ab-initio pair distributions

Also seen in ab-initio pair distributions

Going neutron rich: What do excess neutrons do?

correlate with each other?

correlate with core protons?

Proton vs. Neutron Knockout M. Duer ELECTRON INCIDENT **ELECTRON** TARGET **NUCLEUS NEUTRON** DRIFT **CHAMBERS** PROTON **CHERENKOV COUNTER** TIME OF FLIGHT **ELECTROMAGNETIC** CALORIMETER

Same # of high-momentum p & n

Going neutron rich: What do excess neutrons do?

Correlation Probability: Neutrons saturate Protons grow

Duer Nature (2018)

Going neutron rich: What do excess neutrons do?

Protons 'Speed-Up' In Neutron-Rich Nuclei

Duer Nature (2018)

Interim Summary

 Nuclear momentum distribution has two distinct regions.

Interim Summary

- Nuclear momentum distribution has two distinct regions.
- #SRC-protons = #SRC-neutrons, independent of neutron excess.

Interim Summary

- Nuclear momentum distribution has two distinct regions.
- #SRC-protons = #SRC-neutrons, independent of neutron excess.
- The fraction of correlated protons / neutrons grow / saturate with neutron excess.

Interim Summary

- Nuclear momentum distribution has two distinct regions.
- #SRC-protons = #SRC-neutrons, independent of neutron excess.
- The fraction of correlated protons / neutrons grow / saturate with neutron excess.

Many-Body System

Short-Ranged Interaction

Probing the NN Interaction

- Measure one- and two-nucleon knockout cross-sections.
- Compare with calculations using different NN interactions.
- See which one works best

Probing the NN Interaction

What's needed?

• Data

 Ab-initio cross-section calculations

First high-Q² A=3 Studies

Cruz Torres and Nguyen et al., arXiv 2001.07230 (2020)

First high-Q² A=3 Studies

What About Heavier Nuclei?

What's needed?

✓ Data (\w high stat)

 Ab-initio cross-section calculations

What About Heavier Nuclei?

What's needed?

✓ Data

- Ab-initio
 cross-section
 calculations
- ✓ Factorization \w spectral functions from NN interaction

$$\frac{d^4\sigma}{d\Omega_{k'}d\epsilon'_k d\Omega_{p'_1}d\epsilon'_1} = p'_1\epsilon'_1\sigma_{eN}S^N(\boldsymbol{p}_1,\epsilon_1)$$

What About Heavier Nuclei?

What's needed?

✓ Data

- Ab-initio
 cross-section
 calculations
- ✓ Factorization \w
 spectral functions
 from NN interaction

$$\frac{d^4\sigma}{d\Omega_{k'}d\epsilon'_k d\Omega_{p'_1}d\epsilon'_1} = p'_1\epsilon'_1\sigma_{eN}S^N(\boldsymbol{p}_1,\epsilon_1)$$

High-Momenta => Pairs Spectral Functions

Pairs \Leftrightarrow Scale Separation

SRCs from Quantum Monte-Carlo (QMC):

Pair Distance Distributions

Many Body = Constant x Two-Body

Factorization is Scheme Independent

Factorization is Scheme Independent

Scale & Scheme Independence Momentum–Position Equivalence

Scale Separation

Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{pn,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pp}^{s=0}(p,\varepsilon)$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019). + many works by Claudio Ciofi; Jan Ryckebusch; Frankfurt Strikman; ...

Pairs Spectral Functions

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019). + many works by Claudio Ciofi; Jan Ryckebusch; Frankfurt Strikman; ...

Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{pn,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pp}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$s^{\alpha}_{ab} = \frac{1}{4\pi} \int \frac{dp_2}{(2\pi)^3} \,\delta[f(p_2)] \,|\varphi^{\alpha}_{ab}(p_1 - p_2)/2|^2 \,n^{\alpha}_{ab}(p_1 + p_2)$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{pn,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pp}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$s_{ab}^{\alpha} = \frac{1}{4\pi} \int \frac{dp_2}{(2\pi)^3} \, \delta[f(p_2)] \, \left[\frac{|\varphi_{ab}^{\alpha}(p_1 - p_2)/2|_1^2 \, n_{ab}^{\alpha}(p_1 + p_2)}{\mathsf{Relative}} \right]_{\mathbf{c.m.}}^{\alpha}$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{pn,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pp}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$s_{ab}^{\alpha} = \frac{1}{4\pi} \int \frac{dp_2}{(2\pi)^3} \, \delta[f(p_2)] \, \left[\frac{|\varphi_{ab}^{\alpha}(p_1 - p_2)/2|_1^2 \, n_{ab}^{\alpha}(p_1 + p_2)}{\text{AV18 / N2LO / ...}} \right]$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

Probing the NN Interaction

What's needed?

✓ Data

- Ab-initio
 cross-section
 calculations
- ✓ Factorization \w
 spectral functions
 from NN interaction

$$\frac{d^4\sigma}{d\Omega_{k'}d\epsilon'_k d\Omega_{p'_1}d\epsilon'_1} = p'_1\epsilon'_1\sigma_{eN}S^N(\boldsymbol{p}_1,\epsilon_1)$$

Experiments usually correct data for detector acceptance and reaction mechanism effect before comparing with theory.

Instead, we bring theory to data!

[theory based simulation forms 'pseudo-data' that is overlaid on exp-data]

Nucleon Distributions Sensitivity

Schmidt et al., Nature (2020)

Relativistic Effects: Light-Cone Formalism (Frankfurt & Strikman)

Schmidt et al., Nature (2020)

Spectral function Sensitivity

pn data completes the picture!

Korover et al. (2020)

pn consistent with theory!

Korover et al. (2020)

Observation of scalar core

Interim Summary

- Nuclear momentum distribution has two distinct regions.
- #SRC-protons = #SRC-neutrons, independent of neutron excess.
- The fraction of correlated protons / neutrons grow / saturate with neutron excess.

+ Allow probing NN interaction up to 1 GeV/c.

Generalization of the Atomic Contact Formalism

Generalization of the Atomic Contact Formalism

While two body interactions can differ....

... Many tools can be shared

Generalization of the Atomic Contact Formalism

Dimensionless Interaction Strength

No accident...

Contacts are low-energy objects, governed by mean-field dynamics => <u>consistency \w atomic results not surprising</u>!

A Tale of Scale Separation & Confinement

EMC Effect:

1.2Original 1.1**Expectation** Iron / Deuterium 1 Structure Function 0.9**Experimental** 0.8**Observation** 0.70.60.2 0.4 0.6 0.8 0 X_B

Aubert et al., PLB (<u>1983</u>); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (<u>2019</u>)

EMC Effect:

Iron / Deuterium Structure Function

Aubert et al., PLB (1983); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (2019)

'Global' EMC Data

'Global' EMC Data

Effect driven by nuclear structure & dynamics

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

$$\frac{F_2^A}{F_2^d} = (Z - N)\frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right)n_{SRC}^d\frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}$$

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

Schmookler, Nature (2019)

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

SRC Universality!

SRC Universality!

E.P. Segarra et al., arXiv: 1908.02223 (2019)

SRC quark-gluon structure

CLAS12 + BAND

- BAND Beam 355nm Laser picosecond pulsed 2 Fiber Mode Scrambler Mechanical Distribution (SM to MM) Photodiode Attenuator System **1**0 90-10 Splitter 1-10-4 90 BAND **/ariable** Optic Attenuator
- 140 scintillator bars
- 5 layers thick (36cm total) with veto layer (2cm thick)
- ToF resolutions < 250 ps
- 3 meters upstream of target, coverage in θ ~ 155-176°
- Design neutron efficiency ~35% and momentum resolution ~1.5%
- Laser system for calibrations

BAND

- 140 scintillator bars
- 5 layers thick (36cm total) with veto layer (2cm thick)
- ToF resolutions < 250 ps
- 3 meters upstream of target, coverage in θ ~ 155-176°
- Design neutron efficiency ~35% and momentum resolution ~1.5%
- Laser system for calibrations

BAND @ JLab Hall B

CLAS12+BAND: DIS \w Tagged Neutrons!!

CLAS12+BAND: DIS \w Tagged Neutrons!!

(1) Atomic nuclei have 2 'phases'

(2) Correlated phase significant across scales

'Our' SRC World

+ Many Theory Collaborators: UW, PSU, HUJI, LANL, ANL, Gent, FIU, Perugia, Pisa, ...

LABORATORY for NUCLEAR SCIENCE

Dr. Florian Hauenstein

Dr. Julian Kahlbow

Jackson Pybus

Afroditi Papadopoulou

Reynier Cruz-Torres

LABORATORY for NUCLEAR SCIENCE

2018-20 SRC Publications:

- Nature, In-Print (2020)
- Nature 566, 354 (2019)
- Nature 560, 617 (2018)
- Phys. Rev. Lett. 122, 172502 (2019)
- Phys. Rev. Lett. 121, 092501 (2018)
- Phys. Lett. B 800, 135110 (2019)
- Phys. Lett. B 797, 134890 (2019)
- Phys. Lett. B 797, 134792 (2019)
- Phys. Lett. B 791, 242 (2019)
- Phys. Lett. B 793, 360 (2019)
- Phys. Lett. B 785, 304 (2018)
- Phys. Lett. B 780, 211 (2018) arXiv: 1908.02223; 1907.03658.