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Is there an ideal fluid in nature?

• flow around an obstacle                            shear viscosity η: 

 

• ideal hydrodynamics (Euler equation): η=0


• real fluids: is flow without friction (η=0) possible? 

Measures of Perfection

Viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx

∂y

Dimensionless measure of shear stress: Reynolds number
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How does friction arise?

• shear viscosity measures momentum transport: 

• kinetic theory for dilute gas: 
 

• degenerate Fermi gas: 
 
                                                                                   (KSS bound: � )1/4π

Kinetic Theory

Kinetic theory: conserved quantities carried by quasi-particles
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Shear viscosity of real fluids

Liquid Helium 
(T=0.1 meV) 

Perfect Fluids: The contenders
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Strongly interacting Fermi gas

H =

Z
dx

X

�=",#
 †
�

⇣
�
~2r2

2m
� µ�

⌘
 � + g0 

†
" 

†
# # "

 dilute gas of ⬆ and ⬇ fermions with contact interaction:



Luttinger-Ward theory

• repeated particle-particle scattering dominant in dilute gas: 

                                                    self-consistent T-matrix  
 
                                                    self-consistent fermion propagator 
                                                    (300 momenta / 300 Matsubara frequencies)   


• spectral function A(k,ε) at Tc

Haussmann et al. 2009

Finite temperature QMC calculations of the spectral func-
tion at unitarity by Bulgac et al. !67" indicate the presence of
a gapped particle excitation spectrum of form #4.1$ also

above the critical temperature, which is not found in our
approach. More generally, it is evident from the spectral
functions of the unitary gas above Tc which are shown in
Fig. 3 that a simple pseudogap ansatz for the spectral func-
tion !69" is not consistent with our results. As can be seen
from the lower three graphs in Fig. 3, our approach leads to
a single, broad, ungapped excitation peak with a quadratic
dispersion at temperatures T!Tc instead of two excitation
branches with a gapped BCS-like dispersion as expected
from the pseudogap approach. In particular we do not ob-
serve a strong suppression of spectral weight near the chemi-
cal potential.

Apart from the dominant peaks discussed above our spec-
tral functions show some additional structures that have
much smaller weight, however. Specifically, at unitarity and
temperatures above Tc a small second peak is visible for k
"kF in Fig. 3. At T=0.3TF this residual peak contains %17%
of the spectral weight. The situation is similar on the BEC
side of the Feshbach resonance at v=1, where above Tc a
second peak at negative energies is present for k"kF, with a
spectral weight of %22%.

Recent experiments by Stewart et al. !19" have succeeded
to perform rf spectroscopy in a momentum-resolved manner
from which one directly obtains the hole spectral function
A−#k ,#$ as a function of both momentum and energy. A

FIG. 3. #Color$ Density plots of the spectral function A#k ,#$ at unitarity !v=1 / #kFa$=0" for different temperatures. From top left to
bottom right: T /TF=0.01, 0.06, 0.14, 0.160#Tc$, 0.18, and 0.30. The white horizontal lines mark the chemical potential $. At temperatures
smaller than the superfluid transition temperature Tc two quasiparticle structures with a BCS-like dispersion can be seen. The width of the
spectral peaks is of the same order as the quasiparticle energy. With increasing temperature the two branches gradually merge into a single
quasiparticle structure with a quadratic dispersion above Tc. Note, however, that the quadratic dispersion is shifted to negative frequencies
compared to the bare fermion dispersion relation. This Hartree shift is of the order of U=−0.46#F and is essentially responsible for the
shifted rf spectra in the normal phase in Fig. 6.
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FIG. 4. #Color online$ The spectral function A#k ,#$ as a func-
tion of # for selected fixed values k at unitarity v=1 / #kFa$=0 and at
criticality T /TF=0.160#Tc$. The selected values of the wave number
k are represented by the colors of the lines corresponding to the
peaks from left to right: k /kF=0.00 #black$, 0.52 #red$, 0.77 #or-
ange$, 1.00 #green$, 1.26 #cyan$, 1.51 #blue$, and 2.02 #magenta$.
The different methods for calculating the spectral function are dis-
tinguished by the line styles: maximum-entropy method #solid
lines$ and Padé approximation #dashed lines$.

SPECTRAL FUNCTIONS AND RF RESPONSE OF… PHYSICAL REVIEW A 80, 063612 #2009$

063612-11

Haussmann 1993, 1994; 
Haussmann et al. 2007

works above and below Tc; 
directly in continuum limit 
 
Tc=0.16(1) and ξ=0.36(1)  
agree with experiment 
 
conserving: exactly fulfills scale 
invariance and Tan relations 
Enss PRA 2012



Transport in linear response

• shear viscosity from stress correlations (cf. hydrodynamics), 

 
 
with stress tensor                                                 (cf. Newton         )


• correlation function (Kubo formula):   Enss, Haussmann & Zwerger, Annals Physics 2011  
 
 

• transport via fermions and bosonic molecules: very efficient description,  
satisfies conservation laws, scale invariance and Tan relations  Enss PRA 2012


• assumes no quasiparticles: beyond Boltzmann kinetic theory, works near Tc; 
includes pseudogap and vertex corrections
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the fermionic and bosonic self-energies are local in real
space. Hence, the coupled equations are solved efficiently
by going back and forth between real and Fourier space.

In the second step GXX′ and ΓXX′ are used as input
for the self-consistent equations (5.21)–(5.26) to calculate
the viscosity response functions T̃ℓ, S̃ℓ. Again, the inte-
gral equations (5.21) and (5.25) become algebraic and are
solved in Fourier space, while the other equations remain
local in real space. Note that the spatial Fourier trans-
form between radial distances r and radial wavenumber
k for the partial-wave component ℓ is given by

Tℓ(k) = 4π(−i)ℓ

∫ ∞

0
dr r2 jℓ(kr)Tℓ(r) , (5.27)

Tℓ(r) =
iℓ

2π2

∫ ∞

0
dk k2 jℓ(kr)Tℓ(k) . (5.28)

In the third step the correlation function χℓ(iωm) is com-
puted from (5.15). It is continued analytically from the
discrete imaginary Matsubara frequencies iωm to the con-
tinuous real frequencies ω via both the Padé method and
a model fit function (cf. section VII). We thus obtain the
retarded correlation function χret

ℓ (ω) = χ′
ℓ(ω) + iχ′′

ℓ (ω).
Finally, the real parts of the viscosities η and ζ are ob-
tained from the correlation functions for ℓ = 2 and ℓ = 0
according to (cf. equations (3.2) and (3.3))

Re η(ω) =
Imχret

ℓ=2(ω)

15ω
, (5.29)

Re ζ(ω) =
Imχret

ℓ=0(ω)

9ω
, (5.30)

where the prefactor of η comes from the angular integra-
tion of the spherical harmonics [Yℓ=2(p̂)]2. Alternatively,
one may solve the integral equation directly for real fre-
quencies where the limit ω → 0 can be taken analytically.
In practice, this approach is useful at high temperatures,
where self-consistency no longer plays a role.

VI. BOLTZMANN-EQUATION LIMIT

In the high-temperature limit T ≫ TF the integral
equations (5.21)–(5.26) can be solved by expanding in
powers of the fugacity

z = eβµ =
4

3
√

π
θ−3/2 + O(θ−3) . (6.1)

To leading order in z, the pair propagator and on-shell
self-energy are given by

Γret(k,Ω) = −i
4πh̄3m−3/2

√

h̄Ω+ 2µ − εk/2
+ O(z) (6.2)

Σret(p, ϵ = εp − µ) = i
8εF

3π

erf(
√

πp/pT )

p/pF
+ O(z) .

(6.3)

  

FIG. 3: [color online] Diagrammatic contributions to the vis-
cosity correlation function χℓ(ω) at first order in the pair
fluctuations: Self-energy (S), Maki-Thompson (MT) and
Aslamazov-Larkin (AL) diagrams.

In the case of on-shell fermions with k = p1 + p2,
h̄Ω + 2µ = εp1

+ εp2
the pair propagator reduces to the

well-known scattering amplitude f(q) = i/q at infinite
scattering length of two particles in vacuum, with rel-
ative momentum q. Note that the exact leading-order
result for the on-shell fermionic self-energy contains a
non-trivial error-function dependence on the ratio of the
momentum p to its thermal value pT that was missing in
previous studies [53]. It is due to the square-root tail in
the pair propagator and gives a noticeable correction at
thermal momenta p ≃ pT . Moreover, this form is indeed
crucial to fulfill the condition of scale invariance, as will
be discussed below.

The fermionic spectral function in the low fugacity,
high temperature limit has most of the spectral weight
concentrated in the coherent peak at ϵ = εp−µ. The peak
width γp = ImΣret(p, ϵ) vanishes like εF pF /p ∼ T−1/2

for typical momenta p ≈ pT , consistent with the assump-
tion for the temperature dependence of the relaxation
time introduced by Bruun and Smith [24]. This implies,
in particular, that the fermionic quasiparticles become
well-defined and thus a Boltzmann equation description
is valid in the regime θ ≫ 1.

From a numerical, iterative solution of the integral
equations (5.21)–(5.26) in the high-temperature limit we
obtain η/(h̄n) = 2.80(1) (T/TF )3/2. This fixes the con-
stant in the asymptotic behavior α(θ) = const θ3/2 at
large values of θ of the universal function introduced in
(4.1). Within the error bars, the numerical value agrees
with that obtained from a variational solution of the full
Boltzmann equation, using higher Sonine polynomials
[24, appendix]. The prediction of a simple power-law de-
pendence of the shear viscosity η(T ) ∼ T 3/2 has recently
been verified experimentally in a temperature range be-
tween θ ≃ 1.5 and θ ≃ 7 by measuring the expansion
dynamics of a unitary gas released from an optical trap
[54]. Very good agreement has been found also with the
expected prefactor.

Remarkably, the solution of the transport integral
equation at high temperatures and small frequencies can
also be obtained by a completely analytical approach.
In fact, in the low fugacity limit, one can terminate the
iterative procedure after the first iteration step (correla-
tion function to first order in the pair propagator) and
resum via a memory function approach, a method that
was developed in the context of electrical conductivi-
ties by Götze and Wölfle [55]. The first-order correla-

 η(ω) = (resummed to 
 infinite order)



Dynamical stress correlations (shear viscosity)

exact viscosity sum rule  
(nonperturbative check):  

 
Taylor & Randeria 2010; Enss, Haussmann & Zwerger 2011; Enss 2013
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Contact density

• dilute gas: universal short-distance behavior  
for 

• Tan contact density C: probability of finding ⬆ and ⬇ close together 
(property of medium)   Tan 2008; Braaten and Platter 2008  

• universal high-energy tails in correlation functions:

r0 . r . `

n(k) ' C

k4
Stewart et al. PRL 2010

light for the imaging propagates along the axial direction
of the trap, and thus we measure the radial momentum
distribution. Assuming the momentum distribution is
spherically symmetric, we obtain nðkÞ with an inverse
Abel transform.

Figure 1(a) shows an example nðkÞ for a strongly inter-
acting gas with a dimensionless interaction strength
ðkFaÞ#1 of #0:08$ 0:04. The measured nðkÞ exhibits a
1=k4 tail at large k, and we extractC from the average value
of k4nðkÞ for k > kC, where we use kC ¼ 1:85 for
ðkFaÞ#1 >#0:5 and kC ¼ 1:55 for ðkFaÞ#1 <#0:5.
These values for kC are chosen empirically such that for
k & kC, the momentum distributions are in the asymptotic
limit to within our statistical measurement uncertainties.
One issue for this measurement is whether or not the
interactions are switched off sufficiently quickly to accu-
rately measure nðkÞ. The data in Fig. 1(a) were taken using
a magnetic-field sweep rate of _B ¼ 1:2G

!s to turn off the

interactions for the expansion. In the inset to Fig. 1a, we
show the dependence of the measured C on _B. Using an
empirical exponential fit [line in Fig. 1(a) inset], we esti-
mate that for our typical _B of 1.2 to 1:4 G

!s , C is system-

atically low by about 10%. We have therefore scaled C
measured with this method by 1:1.

The contact is also manifest in rf spectroscopy, where
one applies a pulsed rf field and counts the number of
atoms that are transferred from one of the two original
spin states into a third, previously unoccupied, spin state
[11]. We transfer atoms from the j9=2;#7=2i state to the
j9=2;#5=2i state. It is predicted that the number of atoms
transferred as a function of the rf frequency, ", scales as
"#3=2 for large ", and that the amplitude of this high
frequency tail is C

23=2#2 [12–14]. Here, " ¼ 0 is the single-

particle spin-flip resonance, and " is given in units of
EF=h. This prediction requires that atoms transferred to
the third spin-state have only weak interactions with the
other atoms so that ‘‘final-state effects’’ are small [14–21],
as is the case for 40K atoms. In Fig. 1(b), we plot a
measured rf spectrum, !ð"Þ, multiplied by 23=2#2"3=2.
The rf spectrum is normalized so that its integral equals
0:5. We observe the predicted 1="3=2behavior for large ",
and obtain C by averaging 23=2#2"3=2!ð"Þ for "> "C,
where we use "C ¼ 5 for ðkFaÞ#1 >#0:5 and "C ¼ 3
for ðkFaÞ#1 <#0:5. These values for "C are chosen such
that for " & "C, !ð"Þ is in its asymptotic limit.
The connection between !ð"Þ and the high-k tail of nðkÞ

can be seen in the Fermi spectral function, which can be
probed using photoemission spectroscopy for ultra cold
atoms [8]. Recent photoemission spectroscopy results on
a strongly interacting Fermi gas [22] revealed a weak,
negatively dispersing feature at high k that persists to
temperatures well above TF. This feature was attributed
to the effect of interactions, or the contact, consistent with
a recent prediction [23]. Atom photoemission spectros-
copy, which is based upon momentum-resolved rf spec-
troscopy, also provides a method for measuring nðkÞ. By
integrating over the energy axis, or equivalently, summing
data taken for different rf frequencies, we obtain nðkÞ. This
alternative method for measuring nðkÞ yields results similar
to the ballistic expansion technique, but avoids the issue of
magnetic-field sweep rates.
In Fig. 2, we show the measured contact for different

values of 1=kFa. We restrict the data to values of 1=kFa
where our magnetic-field sweeps are adiabatic [24].

0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

0 2 4 6 8 10 12
0

2

4

6

0 0.5 1.0 1.5

0

2

)k(n
k4

2/3
)

(

k

C

a b

FIG. 1. Extracting the contact from the momentum distribution
and rf line shape. (a) Measured momentum distribution for a
Fermi gas at 1

kFa
¼ #0:08$ 0:04. Here, the wave number k is

given in units of kF, and we plot the normalized nðkÞ multiplied
by k4. The dashed line corresponds to 2:2, which is the average
of k4nðkÞ for k > 1:85. (Inset) The measured value for C depends
on the rate of the magnetic-field sweep that turns off the
interactions before time-of-flight expansion. (b) rf line shape
measured for a Fermi gas at 1

kFa
¼ #0:03$ 0:04. Here, " is the

rf detuning from the single-particle Zeeman resonance, given in
units of EF=h. We plot the normalized rf line shape multiplied by
23=2#2"3=2, which is predicted to asymptote to C for large ".
Here, the dashed line corresponds to 2:1, from an average of the
data for "> 5.
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FIG. 2. The contact. We measure the contact, C, as a function
of ðkFaÞ#1 using three different methods. Filled circles corre-
spond to direct measurements of the fermion momentum distri-
bution nðkÞ using a ballistic expansion, in which a fast magnetic-
field sweep projects the many-body state onto a noninteracting
state. Open circles correspond to nðkÞ obtained using atom
photoemission spectroscopy measurements. Stars correspond to
the contact obtained from rf spectroscopy. The values obtained
with these different methods show good agreement. The contact
is nearly zero for a weakly interacting Fermi gas with attractive
interactions (left hand side of plot) and then increases as the
interaction strength increases to the unitarity regime where
ðkFaÞ#1 ¼ 0. The line is a theory curve obtained from Ref. [5].

PRL 104, 235301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

235301-2

many-body few-body

hn̂"(r)n̂#(0)i ' C

✓
1

r
� 1

a

◆2

-k +k

C



η
/s

  
[− h

/k
B
]

T/TF

su
p
e
rf

lu
id

phonon contrib.
Luttinger-Ward theory

kinetic theory

 1

 10

Tc 0.1  1  10

Shear viscosity/entropy 
of the unitary Fermi gas 

phonon 
contribution
⇠ T�8

classical limit
⇠ T 3/2

Enss, Haussmann & Zwerger 2011

agrees with large-N  
transport calculation 
Enss PRA 2012

lowest friction of  
any nonrelativistic  

quantum fluid

experiment: John Thomas 
recent theory: Kagamihara et al. 2019



Universal phase diagram

• Quantum Critical Point (QCP) at T=0, μ=0, 1/a=0 unitarity 
Nikolic & Sachdev 2007 

• change of ground state at QCP, density n is order parameter (vacuum for μ<0)


• quantum critical regime: incoherent relaxation rate �τ−1 ∼ kBT/ℏ

PHYSICAL REVIEW A 86, 013616 (2012)

Quantum critical transport in the unitary Fermi gas

Tilman Enss
Physik Department, Technische Universität München, D-85747 Garching, Germany

(Received 5 April 2012; published 12 July 2012)

The thermodynamic and transport properties of the unitary Fermi gas at finite temperature T are governed by
a quantum critical point at T = 0 and zero density. We compute the universal shear viscosity to entropy ratio
η/s in the high-temperature quantum critical regime T ≫ |µ| and find that this strongly coupled quantum fluid
comes close to perfect fluidity η/s = h̄/(4πkB ). Using a controlled large-N expansion, we show that already
at the first nontrivial order the equation of state and the Tan contact density C agree well with the most recent
experimental measurements and theoretical Luttinger-Ward and bold diagrammatic Monte Carlo calculations.

DOI: 10.1103/PhysRevA.86.013616 PACS number(s): 03.75.Ss, 05.30.Fk, 51.20.+d

I. INTRODUCTION

The unitary Fermi gas is a basic many-body problem which
describes strongly interacting fermions ranging from ultracold
atoms near a Feshbach resonance [1– 3] to dilute neutron
matter. The properties in the dilute limit are independent of
the microscopic details of the interaction potential and share
a common universal phase diagram. A quantum critical point
(QCP) at zero temperature governs the critical behavior in the
whole phase diagram as a function of temperature T , chemical
potential µ, detuning from the Feshbach resonance ν, and
magnetic field h [4– 6]. Whereas conventional QCPs separate
two phases of finite density, in our case the density itself is the
order parameter which vanishes for µ < 0 and assumes a finite
value for µ > 0 [6]. In the spin-balanced case h = 0 and at
resonance ν = 0 the Fermi gas is unitary and scale invariant. In
terms of the thermal length λT = h̄(2π/mkBT )1/2 the density
equation of state nλ3

T = fn(µ/kBT ) is a universal function
which has been measured experimentally [7,8]. The unitary
Fermi gas becomes superfluid at a universal Tc(µ) ≈0.4 µ [8];
see Fig. 1. In this work we focus on the quantum critical
regime T > 0 above the QCP at h = 0, ν = 0, and µ = 0,
where nλ3

T = fn(0) ≈2.9 is a universal constant. Since the
thermal length λT is comparable to the mean particle spacing
n−1/3, quantum and thermal effects are equally important.
There is no small parameter, and it is a theoretical challenge to
compute the critical properties. Recent measurements [8] and
computations [9,10] of the equation of state now agree to the
percent level. However, a precise determination of transport
properties is much more demanding.

In order to reliably estimate transport coefficients we
perform controlled calculations in a large-N expansion [5,11].
Due to the lack of an intrinsic small parameter we introduce
an artificial small parameter, 1/N , which organizes the
different diagrammatic contributions, or scattering processes,
into orders of 1/N . The original theory is recovered in
the limit N = 1. One can perform controlled calculations
by including all diagrams up to a certain order in 1/N ,
and these approximations can be systematically improved
by going to higher order. This approach is similar to the ε
expansion in the dimension of space. The advantage over
perturbation theory is that it is controlled even at strong
interaction, while in contrast to quantum Monte Carlo it works
directly in the thermodynamic limit and needs no finite-size
scaling.

We thus obtain results for the Tan contact density [12– 14]
and the transport properties in the quantum critical region.
The shear viscosity η = h̄λ−3

T fη(µ/kBT ) assumes a universal
value at µ = 0. In kinetic theory η = P τ is given by the pres-
sure P times the viscous scattering time τ , which is related to
the incoherent relaxation time of the gapless critical excitations
above the QCP. The entropy density s = kBλ−3

T fs(µ/kBT ) at
µ = 0 is exactly proportional to the pressure, s = 5P/2T , and
the viscosity to entropy ratio (at N = 1),

η

s
= 2

5
T τ ≈0.74

h̄

kB

, (1)

is a universal number independent of temperature. A
temperature-independent ratio η/s = h̄/(4πkB) has been
found in certain string theories [15] and is conjectured to hold
as a lower bound in other models [16]. Strongly interacting
quantum fluids which saturate this bound are called perfect
fluids [17]. Among real nonrelativistic fluids the unitary Fermi
gas comes closest to the bound and is almost perfect [18– 20],
while for graphene the viscosity decreases logarithmically with
temperature in the quantum critical regime [21].

We compare our large-N results at N = 1 [22] with exper-
imental measurements [8,19,23,24] and other theoretical ap-
proaches, including self-consistent Luttinger-Ward [18,25,26]
and bold diagrammatic Monte Carlo (BDMC) [9] calculations;
see Table I. The excellent agreement between experiment and
BDMC provides a reliable reference to assess the accuracy of
other methods. We find very good agreement of the pressure
P with large-N (3% above BDMC) and Luttinger-Ward (4%
below) calculations, just slightly outside the error bars, and
we find similarly good agreement for the entropy density s.
From the BDMC equation-of-state simulations of [9], one can

FIG. 1. (Color online) Universal phase diagram of the unitary
Fermi gas.
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(large γ = µn/2 in the figure), the initial decay withD⊥(t = 0) = D⊥
0 /(1 + η) is much slower than

the µ = 0 case and suggests an apparent diffusivity slowed down by a factor 1/(1 + η), emphasiz-
ing the need to determine µ for accurate determination of D⊥

0 from magnetization dynamics. For
larger times, the magnetization decay deviates from the cubic exponential form and accelerates as
|Mxy| itself decays.

2.2. Longitudinal Trap Dynamics
Most experiments with ultracold atoms are performed in an external trapping potential that is,
to first approximation, harmonic. The trapped gas has characteristic collective modes of density,
where spin-up (spin-↑) and spin-down (spin-↓) move in phase, and spin, where opposite spin
states oscillate out of phase (55). In fact, the longitudinal component of the spin-hydrodynamic
equations depends strongly on local density (56, 57); in contrast, the transverse component is
insensitive to pure density gradients when the mean-free path ℓmfp is shorter than the cloud size
(58). Therefore, even for a trapped gas, transverse spin transport in a strongly interacting Fermi
gas probes essentially local properties (see discussion below). In the following, we focus on the
more significant effects of a trap on longitudinal transport.

Collective spin-dipole motion is observed experimentally by separating spin-↑ and spin-↓
clouds and then letting them collide (see Figure 3) (25, 59). After initial bounces, the clouds
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Figure 3
Spin dipole. (a) Contour plots of the polarization and spin-current density (arrows) in the xz-plane, for a longitudinal spin-dipole mode
excited along z. The red dashed contour shows where the density has fallen to 0.1 of the central value. (b,c) A Fermi gas is prepared by
segregating the two spin components into two initially disconnected reservoirs at equilibrium by means of a thin optical barrier with a
waist of about 2 µm (green). Spin-dipole dynamics show the local spin relaxation rate, !/τεF, plotted here as a function of 1/kFa for
0.31 ≤ T/TF ≤ 0.7. Experimental points are obtained by fitting dynamics at t > 50ms to the solution of the diffusion model,
Equation 15. A maximum in the local spin-relaxation rate, τ−1, corresponds to a minimum in the global damping rate, &SD. Lines are
predictions from T-matrix kinetic theory, assuming the nominal initial T/TF and allowing a ± 20% temperature variation (shaded areas).
These data and Figure 1b indicate that the minimum τ occurs at moderate degeneracy and near-resonant interactions. Panel a adapted
from Reference 56, and panels b and c from Reference 59.

www.annualreviews.org • Spin Transport of Unitary Fermions 91

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

19
.1

0:
85

-1
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 W
IB

60
67

 - 
U

B
 H

ei
de

lb
er

g 
on

 0
3/

12
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

Valtolina et al. Nature Phys. 2017 
Enss & Thywissen, Annu. Rev. Cond. Mat. Phys. 2019

Universal spin diffusion:



Bulk viscosity



Bulk viscosity

• definition 

• determines 
- damping of breathing motion / free expansion 
- sound attenuation 
- breaking of scale invariance

shear "F/A = η
∂vx

∂y
bulk "F/A = ζ∇ ⋅ ⃗v



Quantum scale anomaly in 2D Fermi gas

breaking of scale invariance (log. running coupling) 
accompanied by damping of breathing motion
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Figure 1: Dynamics of a 2D Fermionic superfluid in position and momentum space. A,

B We prepare a 2D Fermi gas and cool it well below the superfluid critical temperature. By
resonantly modulating the trap potential, we excite the isotropic breathing mode. Once the drive
is stopped, the breathing oscillations continue for a variable time t, after which we measure (C)
the in-situ density distribution ⇢(r, t), and (D) the pair momentum distribution n(k, t) using a
matterwave focusing technique. E Example of azimuthally averaged ⇢(r, t) (orange) and n(k, t)
(blue) taken at interaction strength ln(kFa2D) ⇡ 1. The in-situ density oscillates at twice the
trap frequency as expected. The momentum distribution exhibits sharp revivals at twice the
rate of the in-situ oscillation. The frequency doubling arises from the sinusoidal oscillation of
the hydrodynamic velocity field, which vanishes at the inner and outer turning points of the
breathing cycle.

shift at low temperatures [Holten et al.()Holten, Bayha, Klein, Murthy, Preiss, and Jochim]. How-
ever, the relative magnitude of these shifts (⇠ 1 � 2%) is several times smaller than the theo-
retical prediction (⇠ 10%), raising questions on the physical relevance of the quantum anomaly
for the dynamical properties of 2D Fermi gases.

Here, we discovered that fermionic interactions which lead to the quantum anomaly in fact
have a remarkably pronounced influence on the long-range behavior of the 2D system. Rather
than the breathing mode frequencies, we explore the spatial coherence properties in momentum
space, which reveales a dramatic signature of scale-invariance breaking that is nearly absent in
the position space density profiles.

In our experiments, we prepared a gas of approximately 2 ⇥ 104 6Li atoms in the low-
est two hyperfine states, trapped in a highly anisotropic potential and cooled to low temper-

3

What is the origin of these effects? The inter-
action region [ln(kFa2D) ~ 1] where we see the
largest scaling violation in the phase correla-
tions coincides with the regions of (i) maximum
critical temperature (14), (ii) largest density-
dependent pairing (pseudogap) (29), and (iii)
the maximum breathing mode frequency shift
(26, 27). This suggests that all these effects may
have a common mechanism. However, the ex-
act dependence of these effects on ln(kFa2D) is
slightly different because local properties such
as fermion pairing and long-range properties
such as coherence respond differently to tem-
perature. Also, because the breathing motion
in the system is much slower than the micro-
scopic scattering rate between fermions, one
can apply the traditional hydrodynamic pic-
ture where the gas can be considered locally in
equilibrium at all times. This allows the dynam-
ical behavior of the gas to be connected with its
equilibrium properties.
In this framework, one possible mechanism

arises from the density-dependent pairing ef-
fect observed in (29). In the crossover region, a
change in density during the breathing cycle
corresponds to a change in the total pairing
energy. However, in 2D BCS theory, the coher-
ence length remains fixed to the vacuum expec-
tation a2D irrespective of the density. Accordingly,
as the particle spacing is the smallest at the inner
turning point, this implies enhanced phase co-
herence extending over more particle spacings
and a smaller decay exponent h. At the same time,
enhanced occupation of low-momentum modes
requires, at a fixed total number, a reduced occu-

pation at highmomenta and hence a depletion in
the pair kinetic energy. We have analyzed the
kinetic energy extracted from the momentum
distribution and found a scaling violation con-
sistent with this argument (fig. S2) (32).
The observations in Fig. 3 may also provide

hints toward explaining the enhanced critical
temperatures in this region. We recall that the
power-law exponents are an indicator of super-
fluid stiffness and phase-space density: a smaller
h corresponds to more coherence and greater
stiffness Ds. For scale-invariant systems, Ds nec-
essarily remains constant throughout the breath-
ing cycle leading to hi/ho = 1. However, in the
crossover regime, the observation of hi/ho < 1
implies that the density-dependent pair cor-
relations enhance the superfluid phase space
density for the same effective temperature. In
other words, the critical Ds required for the
superfluid transition can be attained at higher
Tc/TF, as seen in (14).
Finally, we note the differences between the

manifestations of the anomaly in the breathing
mode frequency shifts and coherence measure-
ments. The density profiles at the turning points
do not exhibit conspicuous effects of the quantum
anomaly and satisfy the prediction of the dy-
namical SO(2,1) symmetry (24). This is consistent
with the small shifts in the breathing mode fre-
quency reported in (26, 27). It further shows that
the breathing mode dynamics are not fully ex-
plained by the equation of state (15–17), which is
scale dependent and would imply a large shift in
the breathing frequency accompanied by an ob-
servable change in the in situ density profile. On

the other hand, the coherence of the system
probes the long-wavelength phase fluctuations
and thus displays a much larger effect of the
quantum anomaly. In addition, the coherence
properties in the superfluid phase are more sen-
sitive to temperature, which leads to a slightly
different dependence on the ln(kFa2D) with
respect to local measurement of many-body
pairing (29). An important goal for future in-
vestigations is to find a theoretical description
that connects these different effects—many-body
pairing, enhanced critical temperature, breath-
ing mode frequencies, and spatial coherence—in
the crossover region. Although the relation be-
tween many-body pairing and breathing mode
properties has been recently demonstrated the-
oretically (36), the connection between the quan-
tum anomaly and coherence remains an open
question.
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Fig. 3. The quantum anomaly and spatial coherence. (A) The first-order correlation function
g1(r,ti) at inner point (red) and rescaled correlation function g1(lr,to) at the outer points (blue), for
ln(kFa2D) ~ −6 (upper panel, BEC) and ln(kFa2D) ~ 1.3 (lower panel, crossover), where l is the
real space scaling factor obtained in Fig. 2 . In the BEC regime, g1(r,ti) and g1(lr,to) coincide, whereas
in the crossover regime, the two curves are conspicuously different. From the power-law decay
of g1(r) ~ r−h, we extract the exponent h. (B) The ratio hi/ho across the BEC-BCS crossover. The
scale-invariant expectation hi/ho = 1 is reproduced in the BEC regime. In the crossover regime, we
observe a sharp dip in the ratio signaling the scaling violation in the long-range phase correlations.
The minimum ratio is at ln(kFa2D) ~ 1.3, which coincides with the regime of many-body pairing
observed in (29). (Inset) The ratio between the zero pair momentum occupation at the inner and
outer turning points, divided by 1/l2; as above, the largest anomaly is observed in the crossover
region. The purple and green curves are guides to the eye.
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Scale transformation

• Hamiltonian 

� 


• expansion � :   

kinetic term �    

 

at resonance also �    

unitary Fermi gas is scale invariant 
entropy per particle unchanged: no dissipation, �   Son 2007

H = ∫x
∑

σ

ψ†
σ(−

∇2

2m )ψσ + g0 ∫x
n↑(x)n↓(x)

x ↦ λx
Hkin ↦

1
λ2

Hkin

Hint ↦
1
λ2

Hint

ζ ≡ 0

a2D

d

a2D

d



Correlation function

• Kubo formula: correlation of stress tensor (pressure) 

"  

• dilute quantum gas  

"          ("  function " ) 

• scale invariant: no contact term, " , and " : 
 
bulk viscosity vanishes for Unitary gas and ideal Fermi/Bose gas 
 Werner, Castin 2006; Son 2007; Enss, Haussmann, Zwerger 2011; Hou, Pitaevskii, Stringari 2013

ζ(ω) = −
1

id2ω ∫
∞

0
dt eiωt ∫ dx ⟨[Πii(x, t), Πjj(0,0)]⟩

Πii = 3P = [H, iD] = 2H +
𝒞

4πma
β

∂Hint
∂ ln |a |

Πii = 2H ζ(ω) ≡ 0



Contact correlations

• bulk viscosity arises purely from contact term (scaling violation):  
 

"  

• scale anomaly arises purely from pair fluctuations: 
 
"     density of local pairs with  

"    pair operator

ζ(ω) = −
1

iωd2(4πma)2 ∫
∞

0
dt eiωt ∫ dx ⟨[𝒞(x, t), 𝒞(0,0)]⟩

𝒞 = g2
0 ψ†

↑ψ†
↓ ψ↓ψ↑ = Δ†Δ

Δ(x) = g0 ψ↓(x) ψ↑(x)

Fujii & Nishida PRA 2018; Enss PRL 2019



High-temperature limit: "  vs. frequencyζ

prediction 
BEC side: bulk viscosity  
from breaking pairs 
 
probe with frequency 
"  : small damping 
"  : large damping
ω < EB
ω > EB"EB

BCS
Unitary

BEC

0.0 0.5 1.0 1.5
ω/T

0.5

1.0

1.5

a2ζ (ω)

dynamical viscosity (unitarity) at leading order in " :

"

z = eβμ ≪ 1

ζ(ω) =
2 2
18π2

z2

λa2
⋅

sinh(ω/2T )
ω/2T

K0(ω/2T ) ∼
ln(T/ω)

a2
z2

Enss PRL 2019; Nishida Ann. Phys. 2019; Hofmann PRA 2020



Quantum degenerate regime (Luttinger-Ward theory)

transport peak of width 
� : 
Quantum Critical Regime
τ−1 ≃ kBT/ℏ

(a)

bu
lk

 v
is

co
si

ty
  ζ

 (k
Fa

)2 /n

ω/EF

bulk viscosity a2ζ(ω), T=0.16
T=0.25
T=0.58
T=2.00
Cω-3/2

10-3

10-2

10-1

100

101

 0.01  0.1  1  10

contact tail �  
at high frequency
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Quantum degenerate regime (Luttinger-Ward theory)

strong enhancement in quantum degenerate regime (� )ζ > η

larger than kinetic theory 
prediction for " : 
 
"

T < TF

a2ζ
η

≃ a2( P − 2ℰ/3
P )

2
≃ (𝒞

P )
2

su
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rfl
ui
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Critical fluctuations

scaling near superfluid  
transition? 
 
"  predicted to  
diverge in mode coupling  
theories (model F) 
 
contact vertex corrections 
strongly suppress fluctuations

ζ ∼ tξ ∼ ξz
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"  pair density correlation: 
enhanced by pairing fluctuations near "
ζ ≃ ⟨[Δ†Δ(x, t), Δ†Δ(0,0]⟩

Tc
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nt

ac
t v
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x 
-δ
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)/m
2

q/kF

bare
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Measure contact correlations

• linear response of contact to change in scattering length 

"  

• dissipation yields phase shift  Fujii & Nishida PRA 2018 

"  

• dissipative heating rate  Horikoshi 2019 
"

∫ dx ⟨[𝒞(x, t), 𝒞(0,0)]⟩ = − 4πm ( ∂⟨C(t)⟩
∂a−1(0) )

S/N

C(t) = Ceq[a(t)] − 36πm ⋅ a2ζ ⋅
da−1

dt

dE
dt

=
9
2

A2ω2 ⋅ a2ζ(ω)



Outlook

• contact correlations in new observables, 
e.g. sound diffusion


• critical fluctuations near phase transition 
and behavior below � 


• local transport measurements in  
homogeneous systems, novel techniques 

• how does hydrodynamics emerge 
in small systems?
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