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 Hadron-hadron correlation 

: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…
size of hadron source,  
time dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 How to study the hadron interaction

• Study on hadron source; S(r)

• Study on interaction; φ(−)(q, r)
• Wave function is distorted by the final state interaction of hadron pair 

• Systems with less known interaction  
    (e.g. ) 

• Advantages; rare opportunity to investigate interaction of …  
        • short-lived hadrons (strangeness system, anti-baryons)  
        • low-energy  (low-momentum) region 

ΛΛ, NΞ, NΩ, K̄N

Hadron correlation in high energy nuclear collision

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2
: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Source size, source shape,…
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 How to study the hadron interaction

•  is sensitive to   

       •  : Gaussian source size 
       • : scattering length 

C(q) R /a0

R
a0 ( ≡ − ℱ(q = 0))

• Lednicky-Lyuboshits (LL) formula 
R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Morita, et al., arXiv:1908.05414 

Powerful tool to study hadron interaction in low energy region

Hadron correlation in high energy nuclear collision

: Source functionS(r)

φ(−)(q, r) : Relative wave function

     • Static Gaussian source  

     • Asymptotic wave fcn. with effective range expansion

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

3
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

bound state ( )a0 > 0

No bound state ( )a0 < 0

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the

5

threshold
K̄0n

Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration

Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the

4

ALICE, S. Acharya et al., (2019), 1905.13470. 

• High-multiplicity events of  pp collisions 

• Strong enhancement ( ) at small momenta ==> Coulomb interaction 

• Deviation from with pure Coulomb case ==> Strong interaction                                    

• Characteristic cusp at the  threshold (k = 58 MeV) ==> isospin sym. breaking 

C > 1

K̄0n

• Experimental data on  int. K̄N

K−pπΣ K̄0n

Λ(1405)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint

Re s

 correlation  
from ALICE
K−p

M. Bazzi, et al.. PLB 704 (2011)
Λ(1520)



We try to include  
  • Coupled-channel effect  
  • Coulomb interaction 
  • threshold energy difference of isospin multiplets 12
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the

4

ALICE, S. Acharya et al., (2019), 1905.13470. 

Jülich Model

Kyoto Model

• Interaction: Jülich meson exchange model  
  

• Calculated with  
  • Coulomb (Gamow) + Strong int.  
  •  with particle massK̄N+πΣ + πΛ

• Interaction: Based on Chiral SU(3) dynamics  

• Calculated with  
• Coulomb + Strong int.  
•  w/ isospin ave. massK̄N (K−p + K̄0n)

Haidenbauer NPA 981 (2018)

Ohnishi et al. NPA 954 (2016)  
Cho, et al.,  PPNP 95 (2017) 

Ikeda, Hyodo, Weise, NPA881 (2012)

Refitted ver. of Müller-Groeling, et al., NPA 513 (1990)
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 correlation with Koonin-Pratt FormulaK−p

Koonin-Pratt formula for  correlationK−p

• Static Gaussian source function: 

Koonin-Pratt formula :  C(q) ≃ ∫ d3r S(r) |φ(−)(q; r) |2

• Consider only s-wave interaction 

• non-identical particles

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

•  : weight of channel j 

•  : channel j component of  wave function  
                  (with  outgoing boundary condition)

ωj

ψ (−)
j (q; r)

K−p

 R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)
Haidenbauer NPA 981 (2018)

CK−p(q) = ∫ d3r SK−p(r)[∑
l≥1

|φC
l (q; r) |2 + |ψC,(−)

K−p (q; r) |2 ]+ ∑
j≠i

ωj ∫ d3r Sj(r) |ψC,(−)
j (q; r) |2 ]

 s-wave 
(Coulomb + Strong)

K−p Coupled-channel  
wave function (s-wave)

   waves 
(Coulomb)

K−p l ≥ 1

K−p outgoingK−

p

K−p K̄0n π0Σ0⋯
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Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

 correlation with Koonin-Pratt FormulaK−p

CONSTRUCTION OF A LOCAL K̄N -π!- … PHYSICAL REVIEW C 98, 025201 (2018)

FIG. 6. Deviations "fij (z) [see Eq. (26)] of the I = 0 amplitudes in the complex energy plane relative to the original chiral SU(3)
amplitudes, visualized as contours. Upper and lower figures represent the results for "fij computed with first- and second-order polynomial
parametrizations of the potential strengths, respectively. From the left, each figure displays "fπ!,π! , "fπ!,K̄N , and "fK̄N,K̄N . Crosses denote
positions of the two poles of the original amplitude in the complex plane. The sequence of contour lines are given in steps of 0.2.

FIG. 7. Scattering amplitudes F
equiv,g
ij (dotted lines) resulting from the equivalent potential (20) in comparison with the original chiral SU(3)

dynamics amplitudes (denoted by F , sold lines) in the I = 1 channel. The real (imaginary) parts are shown by the thick (thin) lines.
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• Reproduce two pole structure of  Λ(1405)
CONSTRUCTION OF A LOCAL K̄N -π!- … PHYSICAL REVIEW C 98, 025201 (2018)

TABLE I. Results of computations using the equivalent coupled-channel potentials, V
equiv,g
ij of Eq. (20) and V

equiv
ij of Eq. (25). Shown are,

in this sequence, the polynomial order of V
equiv
ij , the energy range used for parameter fixing, the “accuracy measure” given by the percentage

P , and the pole positions in the I = 0 scattering amplitude. The theoretical uncertainties of the original chiral SU(3) dynamics pole positions
are taken from Ref. [51].

Potential (polynomial in E) Energy range [MeV] P High-mass pole [MeV] Low-mass pole [MeV]

V equiv,g 32 1425 − 23i 1336 − 69i

V equiv (first order) 1403–1440 84 1423 − 26i 1378 − 80i

V equiv (second order) 1362–1511 99 1424 − 27i 1380 − 81i

Original poles [51] 1424+3
−23 − 26+3

−14i 1381+18
−6 − 81+19

−8 i

Not surprisingly, the potential strengths seen in Fig. 4
reflect qualitatively the trends already expected from the
leading-order (LO, Tomozawa-Weinberg) terms of the chi-
ral SU(3) meson-baryon Lagrangian. For example, the LO
I = 0 K̄N diagonal potential at threshold, when integrated
over volume, gives UK̄N→K̄N ≃ −3/(4f 2) ≃ −3.4 fm2, with
the pseudoscalar meson decay constant f ≃ 92 MeV. The
corresponding LO I = 0 π! diagonal potential is slightly
stronger and gives Uπ!→π! ≃ −1/f 2 ≃ −4.5 fm2. Next-to-
leading-order terms are important, of course, and contribute to
the more detailed quantitative behavior of the Uij .

The smooth energy dependence of U
equiv,"V
ij (

√
s) in Fig. 4

justifies terminating the polynomial expansion (25) of the
parametrized potential V

equiv
ij at low orders (i.e., first or second

order, αmax = 1, 2). The energy range of validity for this
parametrization is determined by maximizingP as discussed in
Sec. II B. The lower boundary of this energy window is varied
in steps of one MeV upward from 1200 MeV, while the upper
boundary is chosen below 1660 MeV in order to avoid the
nonanalytic behavior at the threshold of the (eliminated) η#
channel. By this procedure, the energy window of optimized

FIG. 4. Solid lines: volume integrals of equivalent potentials
including the adjustment term "Vij (

√
s), U

equiv,"V
ij (

√
s) of Eq. (32),

in the isospin I = 0 channels (K̄N → K̄N,π! → π!, and K̄N →
π!). Shown for comparison are the parametrizations U

equiv
ij (

√
s )

according to Eq. (25) with first- and second-order polynomial ex-
pansions (dotted and dashed lines, respectively). The energy range
for fitting the first-order (second-order) polynomial representations
of V

equiv
ij is 1403–1440 MeV (1362–1511 MeV).

fitting is determined as 1403–1440 MeV (1362–1511 MeV)
for the first-order (second-order) polynomial. The resulting
polynomial coefficients, Kα,ij , are summarized in Table II.
They display excellent convergence in the following sense: The
K2 coefficients are an order of magnitude smaller than K0 and
K1. The latter do not change significantly when including the
K2 terms. This indicates the dominance of the linear energy
dependence and justifies the truncation of the expansion at
the second order. The volume integral U

equiv
ij (

√
s) is shown

in Fig. 4 by dashed (first-order parametrization) and dotted
(second-order parametrization) lines.

The scattering amplitudes calculated using the optimized
potential V

equiv
ij of Eq. (25), with first- and second-order

polynomials, are compared with the original chiral SU(3)
dynamics amplitudes in Fig. 5. The results of both the first- and
second-order parametrizations are now significantly improved
from those of F equiv,g in Fig. 2, thanks to the added adjustment
term. It is worth noting that the potential with the first-
order polynomial properly extrapolates the amplitude down
to the region near the π! threshold even though the lower
boundary of the energy range for parameter adjustment is
around 1400 MeV, far above the π! threshold at ∼1330 MeV.
This can be understood by the almost linear energy dependence
of the potential strength seen in Fig. 4.

In order to investigate the pole structure of the #(1405), the
scattering amplitudes are analytically continued into the region
of complex energies. In Fig. 6, we plot the deviations of the
amplitudes, "fij (z) of Eq. (26), in the complex energy plane.
With both the first- and second-order polynomial potentials,
each component of the original chiral SU(3) amplitude matrix
is reproduced with 20% accuracy, including the energy region
of the high-mass (K̄N -dominated) pole of the #(1405). The
low-mass pole can likewise be covered when the second-order
polynomial is used. For a more quantitative assessment, the
pole positions and the accuracy measure P defined in Eq. (28)
are summarized in Table I. The first-order polynomial potential
reproduces the pole positions within the theoretical uncertain-
ties given in Ref. [51]. The second-order polynomial version of
the potential further improves these pole positions, which are
then reproduced to an accuracy of 1 MeV. The value of P is as
high as 84 (99) with the first-order (second-order) potential.
This result is comparable with or better than that of the
single-channel K̄N potential in Ref. [18], which givesP = 96.
Recalling that the complete set of available experimental data
for K−p scattering and reactions is reproduced accurately by
the original amplitude of chiral SU(3) dynamics, the equivalent

025201-7

High-mass pole : 1424 - 27i 
Low-mass pole  : 1380 - 81i

Original chiral SU(3) : 1424 - 26i 
                                     1381 - 81i
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Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 
Ikeda, Hyodo, Weise, NPA881 (2012)

 correlation with Koonin-Pratt FormulaK−p

In the non-interacting limit, where the every interaction is switched off, the ψ(r) reduces to j0(qr) and
C(q) goes to unity for every momentum.

When both of the observed particles are charged, the relative wave function is also modified by
the Coulomb interaction. Because of this long range interaction, the modification of the higher partial
waves (l ≥ 1) is not negligible. The asymptotic wave function is no longer written by the plain wave
exp(+iqi ·r) but by the Coulomb wave function ψC(r, q). The relative wave function including Coulomb
effect is written as

ϕC,(−)(r, q) = ψC(r, q)− ψC
0 (qr) + ψ(q, r), (10)

where ψC
0 is the s-wave component of Coulomb wave function ψC . By switching off the Coulomb in-

teraction, ψC and ψC
0 reduce to plain wave exp(+iq · r) and j0(qr), respectively. The scattering wave

function ψ(qr) satisfies the Coulomb outgoing boundary condition as follows. The s-wave asymptotic
wave function can be written with the superposition of the regular solution F (qr) and irregular solution
G(qr) as

ψ(q, r) → c1
qr

F (qr) +
c2
qr

G(qr) (11)

With these two solutions, the Coulomb incoming (outgoing) wave uC(−)(q, r) (uC(+)(q, r)) are expressed
as [29]

uC(−)(q, r) = −eiσ(iF (qr)−G(qr)), (12)

uC(+)(q, r) = e−iσ(iF (qr) +G(qr)), (13)

where σ = argΓ(1 + iη) is s-wave Coulomb phase shift with Sommerfeld parameter η = µα/q. In the
limit of switching off the Coulomb force α → 0, these reduce to the plain wave; uC(±)(q, r) → e±iqr.
Using these Coulomb incoming and outgoing wave, the asymptotic wave function is written as

ψ(q, r) → aC

2iqr
uC(+)(q, r) +

bC

2iqr
uC(−)(q, r). (14)

The Coulomb outgoing boundary condition, that ψ(q, r) in Eq. (10) must satisfy, is given as |aC | = 1.
Employing Eq. (10), the correlation function including the Coulomb effect is written as

C(q) =

∫
d3rS(r)

[
|ψC(qr, q)|2 − |ψC

0 (q, r)|2 + |ψC(r)|2
]
. (15)

Due to the presence of the Coulomb interaction, the correlation function differs from unity even in the
limit of switching off the strong interaction.

When the coupling between the observed channel (denoted as channel 1 in the following) and other
channels is not negligible, the coupled channel effect to the correlation function must be taken into
account. The modified Koonin-Platt formula for the coupled channel problem is obtained in Ref. [30] as

C1(q) =
n∑

i=1

ωi

∫
drSi(r)|Φ(−)

i (q1, r)|2, (16)

where Si(r) and ωi are the relative source function and the weight of channel i, respectively. Φ(−)
i (q1, r) is

the i-th component of coupled channel wave function. Assuming the absence of the Coulomb interaction
for every coupled channel, the Φ(−)(q1, r) is written in the form of

Φ(−)(q1, r) = e+iq1·re1 − j0(q1r)e1 +Ψ(q1, r), (17)

where ei is the unit vector of channel i and Ψ(q1, r) is the s-wave scattering wave function satisfying the
coupled channel Schrödinger equation;

⎛

⎜⎜⎜⎜⎝

− ∇2

2µ1
+ V11(r) V12(r) · · · V1n(r)

V21(r) − ∇2

2µ2
+ V22(r) +∆2 · · · V2n(r)

...
...

. . .
...

Vn1(r) Vn2(r) · · · − ∇2

2µn
+ Vnn(r) +∆n

⎞

⎟⎟⎟⎟⎠
Ψ(q1, r) = EΨ(q1, r), (18)

E =
q21
2µ1

, Ψ(q1, r) =
t (ψ1(q1, r),ψ2(q2, r), · · · ,ψn(qn, r)) , (19)

3

Coupled-channel Schrödinger eq.

• Channels 

Vij = V strong
ij ( +VCoulomb)

In the non-interacting limit, where the every interaction is switched off, the ψ(r) reduces to j0(qr) and
C(q) goes to unity for every momentum.

When both of the observed particles are charged, the relative wave function is also modified by
the Coulomb interaction. Because of this long range interaction, the modification of the higher partial
waves (l ≥ 1) is not negligible. The asymptotic wave function is no longer written by the plain wave
exp(+iqi ·r) but by the Coulomb wave function ψC(r, q). The relative wave function including Coulomb
effect is written as

ϕC,(−)(r, q) = ψC(r, q)− ψC
0 (qr) + ψ(q, r), (10)

where ψC
0 is the s-wave component of Coulomb wave function ψC . By switching off the Coulomb in-

teraction, ψC and ψC
0 reduce to plain wave exp(+iq · r) and j0(qr), respectively. The scattering wave

function ψ(qr) satisfies the Coulomb outgoing boundary condition as follows. The s-wave asymptotic
wave function can be written with the superposition of the regular solution F (qr) and irregular solution
G(qr) as

ψ(q, r) → c1
qr

F (qr) +
c2
qr

G(qr) (11)

With these two solutions, the Coulomb incoming (outgoing) wave uC(−)(q, r) (uC(+)(q, r)) are expressed
as [29]

uC(−)(q, r) = −eiσ(iF (qr)−G(qr)), (12)

uC(+)(q, r) = e−iσ(iF (qr) +G(qr)), (13)

where σ = argΓ(1 + iη) is s-wave Coulomb phase shift with Sommerfeld parameter η = µα/q. In the
limit of switching off the Coulomb force α → 0, these reduce to the plain wave; uC(±)(q, r) → e±iqr.
Using these Coulomb incoming and outgoing wave, the asymptotic wave function is written as

ψ(q, r) → aC

2iqr
uC(+)(q, r) +

bC

2iqr
uC(−)(q, r). (14)

The Coulomb outgoing boundary condition, that ψ(q, r) in Eq. (10) must satisfy, is given as |aC | = 1.
Employing Eq. (10), the correlation function including the Coulomb effect is written as

C(q) =

∫
d3rS(r)

[
|ψC(qr, q)|2 − |ψC

0 (q, r)|2 + |ψC(r)|2
]
. (15)

Due to the presence of the Coulomb interaction, the correlation function differs from unity even in the
limit of switching off the strong interaction.

When the coupling between the observed channel (denoted as channel 1 in the following) and other
channels is not negligible, the coupled channel effect to the correlation function must be taken into
account. The modified Koonin-Platt formula for the coupled channel problem is obtained in Ref. [30] as

C1(q) =
n∑

i=1

ωi

∫
drSi(r)|Φ(−)

i (q1, r)|2, (16)

where Si(r) and ωi are the relative source function and the weight of channel i, respectively. Φ(−)
i (q1, r) is

the i-th component of coupled channel wave function. Assuming the absence of the Coulomb interaction
for every coupled channel, the Φ(−)(q1, r) is written in the form of

Φ(−)(q1, r) = e+iq1·re1 − j0(q1r)e1 +Ψ(q1, r), (17)

where ei is the unit vector of channel i and Ψ(q1, r) is the s-wave scattering wave function satisfying the
coupled channel Schrödinger equation;

⎛

⎜⎜⎜⎜⎝

− ∇2

2µ1
+ V11(r) V12(r) · · · V1n(r)

V21(r) − ∇2

2µ2
+ V22(r) +∆2 · · · V2n(r)

...
...

. . .
...

Vn1(r) Vn2(r) · · · − ∇2

2µn
+ Vnn(r) +∆n

⎞

⎟⎟⎟⎟⎠
Ψ(q1, r) = EΨ(q1, r), (18)

E =
q21
2µ1

, Ψ(q1, r) =
t (ψ1(q1, r),ψ2(q2, r), · · · ,ψn(qn, r)) , (19)

3• Particle basis:  ( )K−p, K̄0n, π+Σ−, π0Σ0, π−Σ+, π0Λ n = 6

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

 ; threshold energy diff.Δi
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K−p

K−p

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, arXiv:1911.01041 

http://arxiv.org/abs/arXiv:1911.01041


CK−p(q) = ∫ d3r SK−p(r)[∑
l≥1

|φC
l (q; r) |2 + |ψC,(−)

K−p (q; r) |2 ]+ ∑
j≠i

ωj ∫ d3r Sj(r) |ψC,(−)
j (q; r) |2 ]

18

Comparison with ALICE data
Source function parameters

• Assumptions  
• Spherical gaussian source:  
     
• 

Sj(r) = SR(r) ∝ exp(−r2/4R2)
ωK̄0N = ωπ0Λ = 1

• Free parameters for source function  
• Source size:  
• Source weight of  channel :  ( )

R ( ∼ 1 fm)
πΣ ωπΣ ∼ 2

Statistical model estimate

Normal size for  
pp collision 

We do not have enough information for S(r)…

4

more prominent. The π0Λ channel couples to K−p only in the
I = 1 sector; its effect is relatively weak. As expected from
the previous discussions, the contributions from the coupled-
channel wave function components decrease with increasing
source size. This leads to a less pronounced cusp structure for
the R = 3 fm case.

Now we are prepared to compare the calculated K−p corre-
lation function with data. We allow for variations of the source
functions because the sources and their weights can be chan-
nel dependent [18]. Since a given source function in the rel-
ative coordinate is obtained from a product of single-particle
emission functions, its weight should be proportional to the
product of particle yields. For example, ωπ−Σ+/ωK−p =
N(π−)N(Σ+)/N(K−)N(p). The production yields N(h)
should be regarded as those of promptly emitted particles in
order for those hadrons to couple with K−p. Thus a particle
pair yield ratio such as N(π−)N(Σ+)/N(K−)N(p) is not a
direct observable, and we regard the source weights, ωj , as
parameters. As a reference value, we consider the simplest
statistical model estimate, ω(stat)

πΣ ≃ exp[(mK +mN −mπ −
mΣ)/Tc] ≃ 2.1, where we adopt Tc = 154 MeV. By as-
suming that the source size R is common to all channels and
the source function is isospin symmetric, we adopt a com-
mon (normalized) source function, Sj(r) = SR(r). We can
fix ωπ0Λ = 1 since the effect of the π0Λ channel is small
and the correlation function does not depend significantly on
ωπ0Λ. On the other hand, the effects of πΣ channels are im-
portant because of the strong K̄N -πΣ coupling, and we vary
the parameter ωπΣ around the reference value. As for the
source size, the ALICE collaboration fixed R = 1.18 fm by
assuming the same source size as that of K+p, which was ob-
tained by the femtoscopic correlation fit based on the Jülich
K+p interaction [18], with Coulomb effects treated by the
Gamow factor correction. Although this correction describes
the Coulomb effect well for light systems such as π-π, it lacks
the necessary accuracy for heavier systems [24]. Thus we also
consider the variation of R in the fitting procedure. While
the source size can in principle be channel dependent, pos-
sible size differences between channels can be compensated
by varying the source weights. We therefore use a common
source size in K̄N , πΣ and πΛ channels.

The measured correlation function is assumed to be de-
scribed in the form [13]

Cfit(q) = N [1 + λ {C(q)− 1}] , (6)

where N is a normalization constant and λ is the pair pu-
rity parameter, known also as the chaoticity parameter. The
pair purity parameter is experimentally determined through a
Monte Carlo simulation, λexp = 0.64± 0.06, so we allow for
variations of λ within 1σ. We fit the correlation function data
in the momentum range q < 120MeV/c, where the distortion
of the s-wave is considered to give the dominant contribution.

In Fig. 3 the χ2/d.o.f. distribution is plotted in the
(R,ωπΣ) plane. A good fit (χ2/d.o.f. ! 1) is achieved in
the region from (R,ωπΣ) = (0.6 fm, 0) to (1.1 fm, 5.0). The
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FIG. 3. Reduced χ2 distribution in the (R,ωπΣ) plane. From inward
out the contour lines correspond to χ2/d.o.f. = 0.5, 1, 1.5 and 2,
respectively.

source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model es-
timate within a factor of (2− 3). Thus we consider parameter
sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally acceptable.
On the other hand, if we take the R = 1.18 fm as adopted by
the ALICE collaboration, ωπΣ " 8 gives a good fit, whereas
such large ωπΣ values appear to be significantly beyond the
statistical model estimate.

Figure 4 shows the fitted K−p correlation function with
R = 0.9 fm as an example of a result satisfying χ2/d.o.f. <
1. The other parameters are chosen as

ωπΣ = 2.95, N = 1.13, λ = 0.58, (7)

to give the minimum value of χ2/d.o.f. = 0.58. The en-
hancement in the low-momentum range and the characteristic
cusp structure are evidently well reproduced. The contribution
from the πΣ source is essential to reproduce the data.

The peak structure seen in Fig. 4 around q ∼ 240 MeV/c
represents the Λ(1520) resonance. The contribution from this
resonance can be simulated by a Breit-Wigner function:

Cres(q) =
bΓ2

(q2/2µK−p +mp +mK− − ER)2 + Γ2/4
, (8)

with parameters b, ER, and Γ. We can isolate the resonance
by subtracting Cfit(q) from the correlation data, using the pa-
rameters of Eq. (7) and R = 0.9 fm. The remaining struc-
ture in the interval 150 MeV/c < q < 300 MeV/c is then
fitted by Eq. (8). The resulting values of the resonance pa-
rameters are ER = 1520.9 MeV and Γ = 9.7 MeV, con-
sistent with the mass MΛ(1520) = 1517 ± 4 MeV and width
ΓΛ(1520) = 15+10

−8 MeV of Λ(1520) listed in Ref. [26]. As
shown in Fig. 4, the sum of Cfit(q) and Cres(q) reproduces
the peak at q ∼ 240 MeV very well.

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

• Pair purity parameter  • Normalization
N ∼ 1

Monte calro simulation by experimental group

Phenomenological parameters

ALICE, S. Acharya et al., (2019), 1905.13470. 
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Comparison with ALICE data

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

Fitting result

CK−p(q) = ∑
j

ωj ∫ d3r S(r) |ΨC,(−)
j (q, r) |2 ]

 • Fitting function

 • Fitting range:  q < 120 MeV/c
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Comparison with ALICE data

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

Fitting result

CK−p(q) = ∑
j

ωj ∫ d3r S(r) |ΨC,(−)
j (q, r) |2 ]

 • Fitting function

 • Fitting range:  q < 120 MeV/c

•  ALICE data has been well reproduced with the reasonable values of parameters.

• C.c. source contribution is essential to reproduce the data.
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Comparison with ALICE data

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

Fitting result

CK−p(q) = ∑
j

ωj ∫ d3r S(r) |ΨC,(−)
j (q, r) |2 ]

 • Fitting function

 • Fitting range:  q < 120 MeV/c

•  ALICE data has been well reproduced with the reasonable values of parameters.

• C.c. source contribution is essential to reproduce the data.
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Comparison with ALICE data

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

Correlation in larger source system
CK−p(q) = ∑

j

ωj ∫ d3r S(r) |ΨC,(−)
j (q, r) |2 ]

• Contribution from the coupled-channel source is weaker,

    • Moderate cusp structure

    • Weak source weight  dependence(ωπΣ)

Same values for 

Shadow: uncertainties by   
                ( )

𝒩, λ, ω
ωπΣ

0.5 < ωπΣ < 5
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Summary

Employing the realistic chiral SU(3) based coupled-channel potential, 
ALICE  data is well reproduced with the reasonable source function 
parameters.

K−p

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, arXiv:1911.01041 

Based on Koonin-Pratt formula, we newly constructed the calculation 
method to include  
• Coulomb interaction,  
• coupled-channel effect,  
• threshold energy difference.

Hadron correlation function in high energy nuclear collisions is a 
powerful tool to study the (multi-)strangeness system.

http://arxiv.org/abs/arXiv:1911.01041


Thank you!
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