Search for a new type of giant resonance in nuclei : Giant Pairing Vibration

Masanori Dozono CNS, the University of Tokyo

3rd Symposium on Clustering as a window on the hierarchical structure of quantum systems 18 May, 2020

Pairing force

- Affects the structure of atomic nuclei
 - Binding energy difference
 - $\delta B = \Delta$ for even-even
 - = 0 for even-odd
 - = - Δ for odd-odd

T=1, S=0, L=0

Collective excitation modes <— Two-nucleon transfer

pairing vibration

"Playground" for pairing studies

Giant Pairing Vibration (GPV)

R.A.Broglia and D.Bes, Phys. Lett. B 69, 129 (1977). M.W.Herzog, R.J.Liotta, and T.Vertse, Pays. Lett. B 165, 35 (1985).

- Excitation of pair across major shells
- Analogy with Giant Resonances
 - GPV : Collective p-p (h-h) excitations
 - GR : Collective p-h excitations

Many experimental attempts in several decades, but no evidence for GPV

L.Fortunato et al., Eur. Phys. J. A 14, 37 (2002).

This work

- Goal : Confirm existence of GPV
 - Sn isotopes : superfluid nuclei
- Tool : Two-neutron transfer with recoilless condition
 - Pair-removal (⁴He,⁶He) reaction

FY2019 achievements

- Experimental side
 - Design the measurements at recoilless conditions
- Theoretical side
 - Theoretical support : Matsuo-san (Niigata)
 - Study properties of GPV

Recoilless condition

- GPV requires L=0 transfer => Recoilless condition (q = 0)
- Pair removal reaction at 0° and appropriate energy

Recoilless condition

Experimental problem : Background from beam & elastic

P6He, GPV ~ P4He, beam&elastic

"New" experimental setup

- Particle separation using degrader + spectrometer
 - Before deg.
 - P6He, GPV ~ P4He, beam&elastic
 - β 6He,GPV < β 4He,beam&elastic
 - After deg.
 - $\Delta E \propto Z^2 / \beta^2$
 - \rightarrow P6He, GPV < P4He, beam&elastic

Sn(⁴He,⁶He) at RCNP

- ⁴He beam @ 90 MeV
- Sn target (A=116—124)
 10 mg/cm²
- Grand Raiden, 0° mode
- AI degrader 10 mg/cm²
 —> ~1 % separation

Theoretical study for GPV

HFB+QRPA calc. by Matsuo-san

- GPV
 - Drastically changed along isotopic chain (energy, strength)

Different from GR

- Low-lying PV
 - Act as counterpart of GPV ?

PV and GPV are essentially the same ?

What is GPV ?

Summary

- GPV might be a key to understand the mechanism of pair condensation.
- To populate GPV selectively, two-neutron transfer measurements at recoilless kinematics are planed.
- Plan in FY2020
 - Experimental side
 - Submit a proposal to RCNP (1 or 2 Sn isotopes)
 - Recoilless kinematics (w/ degrader)
 - Small momentum transfer (q ~ 0.2 fm⁻¹) kinematics (w/o degrader)
 - Experiment @ CYRIC
 - reaction mechanism of two-neutron transfer
 - Theoretical side
 - Theoretical support : Matsuo-san (Niigata)
 - Properties of GPV