Development of overall emulsion scanning method with high efficiency

and speed for large-scale analyses of few-body hypernuclei

This work is supported by MEXT KAKENHI Grant Number JP<u>19H05147</u> & JSPS KAKENHI Grant Number JP16H02180

Kazuma NAKAZAWA Phys. Dept., Gifu Univ., JAPAN 18th May, 2020

18" May, 2020

On behalf of E07(J-PARC) collaborations

Outline

- **1.** The E07 experiment at J-PARC & Recent results ($* \equiv$ hypernuclei)
- 2. Issues to be solved for discovery of new hypernuclei
 - 2-1. Speeding up for scanning of E07 emulsion
 - 2-2. Automated tracking of charged particles in 3-dimension
 - 2-3. Machine learning to recognize 3 vertices of double hypernuclei
- **3.** Summary and prospect for FY2020

1/16 The E07 experiment @ J-PARC [2016-] (K-,K+) reaction 1.New Hybrid method 2. Overall-scanning VP : Vertex Picker Emulsion Stack SCIFI Block SCIFI Block Fully automatic detection of SSD SSD 3 vtx. event (K+ like NAGARA event, KISO event Diamond 10 times statistics of that C) Target π. with the hybrid method (1/0.3): free from X acceptance & tracking 4 : 'p'(K⁻, K⁺) Ξ⁻ in the emulsion J-PARC 1. Pure K-beam \cdot 'n'(K⁻, K⁰) Ξ^- reaction (better 3.5 times than KEK-PS) \rightarrow 10⁵ Ξ - stop events 2. More emulsion volume (x 3) Measurement of the mass of 10³ (E373) → 10⁴ Ξ- stop events $\sim 10^3$ double hypernuclei 1. X ray measurement from Ξ atom $\sim 10^2$ Xi hypernuclei with Hyperball-X with A<16 \rightarrow study of Ξ -N interaction 2. $\sim 10^2$ double hypernuclei Automated track-following

Topics with 100 times statistics of E373

1) s-shell DBL. hypernuclei : ${}^{4}_{\Lambda\Lambda}$ H, ${}^{5}_{\Lambda\Lambda}$ He and ${}^{5}_{\Lambda\Lambda}$ H

 $\Lambda\Lambda$ - Ξ N-H coupling interaction affects mass, since s-shell nucleons are not fully occupied. Thus, it can be determined.

2) A = 6~17 $\Lambda\Lambda$ hypernuclei (spectroscopy

Confirmation of $\Lambda\Lambda$ interaction strength and nuclear structure effects such as shrinkage due to Λ , independent information of NAGARA event, ${}^{6}_{\Lambda\Lambda}$ He.

3) Ξ -hypernuclei : $\Xi^{-16}O$, $\Xi^{-14}N$ (KISO event),

From multiple events of Ξ -hypernucleus, we can determine the (natural) width of Ξ -hypernucleus, which is related to $\Lambda\Lambda$ - Ξ N coupling interaction.

4) ΞN interaction with X-ray from Ξ -atoms

Expected yields for X-rays from Br and Ag are so small. To observe the shifts, it is necessary for detecting peak shapes with 10 times statistics.

5) Λ - Λ P-wave interaction (?)

If $\Lambda\Lambda$ hypernuclei can be detected in excited states with **one** Λ -hyperon in p-orbit, it may present information on $\Lambda\Lambda$ p-wave interaction, where that will be recognized via the spectroscopy of $\Lambda\Lambda$ hypernuclei. The interaction might change max. mass of n-star.

3/16

2. Recent Results from E07 (J-PARC)

At present, Hybrid Method (starting in Apr., 2018)

• M. Danysz et al. [1963] levent

■ E176 (KEK) [1991]1 (DBL-Λ) + 2 (Twin)

	KEK-PS	E07	E07	
	E373	(current*)	(estimated)	
Ξ^{-} stop w/ fragment(s)	430	~2.5 x 10 ³	5100	
All Ξ⁻ stop	~650	~4.0 x 10 ³	7800	
Double Λ + twin + confused	9	34	~100	
	χ/	* Apr. 2020		

Double A hypernuclei

Ξ hypernuclei (List of nuclides)

p A		Ę				n					
		Ξ^{-} captured by		daughter							
		¹² C	¹⁴ N	¹⁶ O	н	Не	Li	Ве	В	С	n
. [E176 #10-9-6 (2 <i>p</i> ?)	\bullet			1			1			
ן ב	E176 #13-11-14 (2p?)	•			1			1			
2	T008, atomic	•			1	2					
<u>ן</u> ב	T009, atomic	•				1	1				
5 .	T004, atomic					1			1		
	E373 Ichikawa's		•			3					1
	T002 (2p?)		•			1		1			1
ן פ	E373 : KISO		•			1		1			
<u>כ</u>	T006 : IBUKI		•			1		1			
Ξ	Т003		•			1		1			1
2	E373 : KINKA		•			1		1			1
<u>}</u>	T007		•			1		1			1
]	T010 : IRRAWADDY		•			3					1
	T011		•			3					1
	E176 #14-03-35		0	0							
•: Uniquely identified, O: Multiple interpretations Several events are identified as ($\Xi^{-} + {}^{14}N - {}^{15}C - {}^{\Lambda}Be + {}^{\Lambda}$							е + _л Н				

although ¹⁴N is the most dominant element in emulsion layer.

 Speeding up	for scanning	of E07 emulsion

ł	SPEC	E373	4MCamera	Piezo(x20)Old	Ultra-High Speed (x20)	
	Visual field size $(\mu m \times \mu m)$	140×120	270×270	560×280	560×560	
	Effective field size	110×90	240×240	530×250	530×530	
	Pixel size (µm)	0.28	0.11	0.275	0.275	
	Frame rate (Hz)	60	160	300	160	
	Depth of field (μm)	3	3	6	6	
	# of picture in half side	80	80	40	40	
	Dead time (s)	(0.2)	(0.2)	0.2	0.2	
	Scanning area(cm ² /day)	5.5	71	380	540	
Ì	• For all E07 Emulsions (yr)	1500	110	21	15	
	Condition area : 1000 cm ² /Em_she	×10 -	×10 ×100			

working : 250 days/year

of layers : 16 / 40 Speed : 1/150 for Piezo dr.

Colors show depth difference

of tracks can be 2.5 times for 40 layers.

3. Summary and Prospect for FY2020

- 1. Under the few results for DBL hypernuclei by previous experiments, we have challenged E07 experiment. Detection with Hybrid-emulsion method has been finished in this April, and then we got <u>34 samples of DBL HY</u>.
- 2. At present, it is not so easy to say B_{AA} for DBL-A HY, however Ξ *N*interaction is cleared to be <u>attractive</u> without any theoretical aspects. By the detected level scheme in $\frac{15}{\Xi}$ hypernucleus, $\underline{AA} \Leftrightarrow \Xi N$ coupling effect can be small.
- 3. To realize Overall Scanning for expected $\sim 1 \times 10^3$ DBL HY and $\sim 1 \times 10^6$ SGL HY, developments has been started for
 - → Speeding up for scanning of E07 emulsion,
 - → Automated tracking of charged particles in 3-dimension,
 - ➔ Machine learning to recognize 3 vertices of DBL HY.
- 4. In FY 2020,
 - Microscope → Ultra High speed (w/ Piezo, Focusing Mod., Camera)
 - Tracking → High efficiency (optimization)

Machine L. → High efficiency (Alpha detection => HY VTX detection)