

B decay reconstruction for the C-odd states with radiative decay

Kenkichi Miyabayashi (Nara Women's University) 2020 May 18th Quantum Cluster workshop via zoom connection

Outline

- Exotic hadrons
- X(3872) and its C-odd partner states search
- Radiative decay $\gamma \eta_c$ (1S or 2S) for J^{PC}=1⁺⁻
- Belle and Belle II data analysis status
- Summary

Exotic hadrons number of constituents > 3

 No explicit forbidding rule to form unusual structure (not conventional qq or qqq) hadrons.

+glue ball, pentaquark, ...

- But lack of experimental evidence for long time.
- Maybe a key to open unrevealed aspect of QCD. ³

X(3872)

3980

Including $c\overline{c}$, unusually narrow despite its mass above DD threshold(=3740MeV/c²). It is contradicting with the ordinary cc mesons (conventional charmonia). Radiative decay to $J/\psi \gamma$, $\psi(2S) \gamma$ seen,

Admixture : most plausible interpretation for X(3872)

E. J. Eichiten et al., PRD73,014014(2006); A. M. Badalian et al., PRD85,031103(2012), S.Takeuchi, K.Shimizu and M.Takizawa, PTEP2014(2014)123D01

DD* component is coupled with the same J^{PC} cc̄, $\chi_{c1}(2P)$ (unseen). \rightarrow can explain Br(X \rightarrow D⁰D^{*0})/Br(X \rightarrow J/ $\psi \pi^{+}\pi^{-}$) is about 10. \rightarrow pure molecule is too fragile to be produced at Tevatron/LHC. \rightarrow another $\chi_{c1}(2P)$ dominant state would become broad. Reaching such an interpretation is remarkable progress.

Where C-odd partner looked for?

Assuming that X(3872) is admixture of molecule and $\chi_{c1}(2P)$, its C-odd partner, J^{PC}=1⁺⁻ state, is also admixture of

 $| molecule(C-odd) > = \{ |DD^* > - |D^*D > \}/\sqrt{2}$ h_c J/ψ χc then not and familiar with p-wave s-wave p-wave

because heavy quark's spin-flip is suppressed.

J^{PC}=1⁺⁻ state possible decay

h_c c c c

In PDG2019, $h_c(1P)$ mass=3525 MeV $Br(h_c(1P) \rightarrow \gamma \eta_c(1S))=51\%$

 $\gamma \eta_c(1S)$ and $\gamma \eta_c(2S)$ are the pursuit of.

7

In B meson decays

J^{PC}=0⁻⁺, 1⁻⁻, 1⁺⁺ charmonia favored, while 1⁺⁻, 0⁺⁺, 2⁺⁺ suppressed. To be released from this restriction, try three-body decay.

$B^0 \rightarrow \gamma \eta_c \ K^- \ \pi^+ \ reconstruction$

- Simulation under Belle analysis software environment done.
- $B^0 \rightarrow h_c(1P) \ K^- \pi^+$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$, $\eta_c(1S) \rightarrow K_S \ K^+\pi^-$.
- Other B generic decay.

B decay candidate reconstruction

e⁺ Exploit two-body kinematics. $M_{bc} = \{(E_{CM}/2)^2 - P^2\}^{1/2} \text{ peaks at 5.28GeV.}$ $\Delta E = E - (E_{CM}/2) \text{ peaks at zero.}$

Adding $\eta_c \rightarrow p\overline{p}$ mode

A. Nishikawa (Nara master student) wrote Belle II analysis script to reconstruct $B \rightarrow \eta_c \gamma K^+ \pi^-$ (+ c.c.), $\eta_c \rightarrow p\overline{p}$ mode.

Multivariate analysis template is better prepared in Belle II software environment than Belle. Belle mdst data is made readable in Belle II software by calling b2bii software(i.e. format converter).

B decay reconstruction efficiencies 4.0% in $\eta_c \rightarrow K_S K^+ \pi^-$ (and c.c.) mode, 25% for pp. Br $(\eta_c \rightarrow K_S K^+ \pi^-)=1.7\%$, Br $(\eta_c \rightarrow pp)=0.15\%$, $\eta_c \rightarrow K_S K^+ \pi^-$ looks still larger yield.

Mass spectrum, different from other cases...

 $\chi_{c1}, \chi_{c2} \rightarrow J/\psi \gamma$ radiative decays, the mass difference of $M(l^+l^-\gamma) - M(l^+l^-)$ shows narrower peak. But since h_c is narrow(Γ =0.7MeV), η_c is slightly wide (Γ =32MeV), $M(pp\gamma)$ peak is shaper than the mass difference.

Summary

- To search for the production of X(3872)'s C-odd partner(J^{PC}=1⁺⁻), $\gamma \eta_c(1S)$ and $\gamma \eta_c(2S)$ are suitable.
- In order to look for in B meson decays, to become free from the restriction by the factorization, threebody B decays (→[J^{PC}=1⁺⁻ state] K⁺ π⁻) are pursuit of.
- Many-body decay, background amount is huge.
- In addition to $\eta_c \rightarrow K_S K^+ \pi^-$, $p\overline{p}$ mode is to be added.
- $M(K_SK^+\pi^-\gamma)$ and $M(p\overline{p}\gamma)$ turned out to be visited.
- For background reduction, Multivariate Analysis is to be employed.