Development of a Cherenkov timing detector for measuring high-intensity secondary beams

K. Shirotori and T. Akaishi for the E50 collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

3rd Symposium on Clustering as a window on the hierarchical structure of quantum systems 18th May 2020

Contents

• Introduction

- Effective degree of freedom of hadrons: $\Xi^* \& \Omega^*$ spectroscopy
- High-momentum K⁻ beam @ J-PARC High-p beam line
- High-rate Cherenkov timing detector: R&D status
 - High-intensity beam measurement by fine-segmented detector
 - Time resolution evaluation of proto-type detectors
- To do

• Summary

Introduction

Investigation of effective degree of freedoms

- To understand role of effective degree of freedoms for hadrons
 - Diquark correlation, molecule states
- Systematic studies: Charmed baryon $(q-q+Q) \Leftrightarrow \Xi^* (q+QQ)$ and $\Omega^* (QQQ)$ systems
 - Heavy (heavier) quarks are key.

Experimental situations of Ξ^* and Ω^* baryons

- Poor experimental data of Ξ^* and Ω^*
 - Systematics studies are essential.
- Narrow decay width expected

\Rightarrow Chance to find and separate states

- $\Gamma \sim a \text{ few 10 MeV of } \Xi^* < a \text{ few 100 MeV of } \Lambda^* / \Sigma^*$
- Ω^* expects to have also narrow width.
- \Rightarrow Systematics measurements
 - Production and decay

- ***** K⁻ beam is effective tool to produce multi-strangeness baryons.
 - High-momentum beam: 5–10 GeV/c
 - Large yield: $\sigma = \sim 1 \ \mu b$ order and high-rate beam
- \Rightarrow Systematic studies by E50 spectrometer
 - Beam measurement is essential for missing mass and decay measurement

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam: $\pi/K/p_{bar}$: MHz K beam \Leftrightarrow 100 MHz π beam
- Beam timing measurement: Start timing
- \Rightarrow "*Bottleneck*" to increase beam intensity

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam: $\pi/K/p_{bar}$: MHz K beam \Leftrightarrow 100 MHz π beam
- Beam timing measurement: Start timing
- ⇒ *"Bottleneck"* to increase beam intensity

High-rate Cherenkov timing detector: R&D status

Fine segment test Signal processing method test

T0 detector

• Segment by Acrylic (PMMA)

3 mm

- \Rightarrow Cross shape: X-type
 - Cherenkov angle direction
 - Suppress time spread
 - Both edge readout
 - $\times 2$ light yield
- 3-mm width segment + MPPC
 - MPPC amplifier: ~10 ns width
- \Rightarrow Time resolution: $\Delta T \sim 50 \text{ ps(rms)}$
 - 3 MHz/segment \Rightarrow Achieved
 - No position dependence
 * Akaishi master thesis
- *Limit: ~3 MHz/3-mm segment
- \Rightarrow < 1-mm width fine segment
 - Handle 100 MHz beam

T0 detector

- Segment by Acrylic (PMMA)
- \Rightarrow Cross shape: X-type
 - Cherenkov angle direction
 - Suppress time spread
 - Both edge readout
 - ×2 light yield
- 3-mm width segment + MPPC
 - MPPC amplifier: ~10 ns width
- \Rightarrow Time resolution: $\Delta T \sim 50$ ps(rms)
 - 3 MHz/segment \Rightarrow Achieved
 - No position dependence *Akaishi master thesis

*****Limit: ~3 MHz/3-mm segment

- \Rightarrow < 1-mm width fine segment
 - Handle 100 MHz beam

100

80

Simulation: Radiator width dependence

• Fine segment simulation

- Geant4: Optical photon
 - Realistic parameters: PMMA, MPPC and so on
- Normalization of # of p.e.

3-mm radiator light yield data
 ⇒ Reflection probability of PMMA: 99.5%

• Light yield is decreased by fine segments.

• ~16 p.e. @ 0.5 mm

- Smaller loss of fast components
 - Small number of reflections
 - Resolution is expected to be kept.

*****Production by company

Cut from one PMMA board

\Rightarrow Actual fine segment test

Fine segments of Cherenkov radiator

• Radiators can be fixed by Silicone sheet with glue and some wires.

Test experiment @ LEPS

• Purposes

- Fine segment test
 - 1.0 mm and 0.5 mm segments
- New amplifier test
- Signal processing test
 - Schottky Barrier Diode filter circuit
 - Integration circuit for TOT
- Time resolution evaluation by MIP
 - e^{\pm} from γ -ray conversion
 - RF timing reference: $\Delta T \sim 14 \text{ ps}$
 - Time walk correction by pulse height
 - Data taking: DRS4 and HUL HR-TDC
- MPPC (s13360-3050PE) conditions: $V_{ov} = +7V$
 - One p.e. pulse height: ~70 mV (amp gain: ×18.8)

Number of photoelectrons

- Average: ~20 p.e.
- Light yield tendency of both edge is consistent.

Number of photoelectrons

Time resolution: @ Vth = 3.5 p.e.

- All data: Similar time resolution of ~45 ps(rms).
 - Time resolution is kept. = Same light yield

***** 3.0 mm \Rightarrow 0.5 mm: \times 6 higher counting rate

• 3 MHz/3 mm @ 30 MHz \Rightarrow 3 MHz/0.5 mm @ 180 MHz

R&D issues of T0 detector

- 1. Ringing suppression
 - Effects to time resolution by pile-up signal
 - Time resolution: 43 ps \Rightarrow 54 ps @ High-rate condition
- ⇒ Schottky Barrier Diode (SBD)
 was used as kind of filtering methods.

2. TOT measurement

- Time-walk correction
- by Time-Over-Threshold (TOT) method
 - Width = (Leading edge Trailing edge)
- Only TDC measurement without ADC
 - Dead-time less digitalization for streaming DAQ

Schottky barrier diode: SBD

- Kind of rectifier diode
 - Quick responses
 - Smaller forward voltage: 100–200 mV level
- ***** Revered pulses and smaller pulses are suppressed.
- \Rightarrow Ringing suppression
- BAT63: Series connection to amplifier
 - Signals width: Same
 - $V_{out} = 0.62 \times (V_{in}) 70.0$ (Minimum input: ~120 mV)

19

Time-Over-Threshold method

- Straight forward method cannot correct time-walk of leading edge.
 - Differential circuit for narrow signal width
 - \Rightarrow Width is saturated in the higher pulse height region.

***** Extract pulse height information from width

- \Rightarrow Integration by slow shaping
 - SBD + slow shaping is essential.
- RC integration circuit
 - $\tau = 2.4 \text{ ns}$
 - $R = 51 \Omega, C = 47 pF$
 - Signal width: ~15 ns
 - Original: ~10 ns

Time resolution: TOT method

* Vth = 3.5 p.e. data
⇒ Correlation is almost same as of
Vth = 4.5 p.e. data.
⇒ It is necessary to investigate.

- Width analysis showed similar resolution. @ Vth = 4.5 p.e.
 - Response is not completely understood by using amplifier w/ SBD and RC circuit.
 - \Rightarrow Investigation of optimum time constant

h2

By width

***** Tail component

-0.2 -0.1

To do

***** To finalize R&D and production of Cherenkov beam timing detector

- Tests in early 2020 are affected by COVID-19.
 - Segmented detector test by EMPHATIC @ Fermilab (Postponed by November)
 - \Rightarrow Test at other facilities (LEPS, ELPH ?)
 - High-rate test @ ELPH ⇒ It will be performed in July(?) or October (?).
 - + Test by mixed signal: Emulate pile-up events
- Investigate and optimization of filtering circuit
 - SBD and RC circuit
- Design of actual detector
 - Segment width size adjustment for beam profile
 - Simulation study for fixing radiators with good filling rate
 - MPPC array (TSV type) for assembling fine segments
- Publication plan
 - X-shape Cherenkov detector: 1st draft is under preparation.
 - High-rate measurement: Signal processing, TOT and so on

TSV MPPC array (1 mm)

Summary

- Investigation of effective degree of freedom for hadrons
 - Systematic study: Charmed baryon $\Leftrightarrow \Xi$ and Ω
- K⁻ beam @ J-PARC High-p beam line
 - High-intensity K^- beam \Rightarrow Dominant π in unseparated beam
 - High-rate capability of beam timing detector: Fine segment beam detector
- R&D of Cherenkov timing detector
 - X-shape Acrylic radiator with thin width: 0.5 mm, 1.0 mm, 3.0 mm
 - Test experiment @ LEPS
 - \Rightarrow Time resolutions of ~45 ps(rms) were kept by using fine segment radiators.
 - Availability of much higher counting rate beam: $\times 6$ higher rate
 - * 3 MHz/3 mm @ 30 MHz \Rightarrow 3 MHz/0.5 mm @ 180 MHz
 - Filtering method test for suppressing ringing effects by SBD
 - High-rate test is necessary for finalizing R&D.
 - TOT method test: SBD + Integration circuit
 - It was found that measurement without ADC can be performed.

***** To finalize R&D and production of Cherenkov beam timing detector

- K⁻ beam intensity is as high intensity as possible at J-PARC high-momentum beam line.
- \Rightarrow To drive investigation of multi-strangeness baryons