Development of a Cherenkov timing detector for measuring high-intensity secondary beams

K. Shirotori and T. Akaishi
for the E50 collaboration

Research Center for Nuclear Physics (RCNP)
Osaka University

3rd Symposium on Clustering as a window on the hierarchical structure of quantum systems
18th May 2020
Contents

• Introduction
 • Effective degree of freedom of hadrons: Ξ^* & Ω^* spectroscopy
 • High-momentum K^- beam @ J-PARC High-p beam line

• High-rate Cherenkov timing detector: R&D status
 • High-intensity beam measurement by fine-segmented detector
 • Time resolution evaluation of proto-type detectors

• To do

• Summary
Introduction
Investigation of effective degree of freedoms

- To understand role of effective degree of freedoms for hadrons
 - Diquark correlation, molecule states
- Systematic studies: Charmed baryon (q-q + Q) ↔ Ξ⁺ (q + QQ) and Ω⁺ (QQQ) systems
 - Heavy (heavier) quarks are key.
Experimental situations of Ξ^* and Ω^* baryons

- Poor experimental data of Ξ^* and Ω^*
 - Systematics studies are essential.

- Narrow decay width expected
 ⇒ Chance to find and separate states
 - $\Gamma \sim$ a few 10 MeV of $\Xi^* <$ a few 100 MeV of Λ^*/Σ^*
 - Ω^* expects to have also narrow width.
 ⇒ Systematics measurements
 - Production and decay

*K^- beam is effective tool to produce multi-strangeness baryons.
 - High-momentum beam: 5–10 GeV/c
 - Large yield: $\sigma = \sim 1$ µb order and high-rate beam
 ⇒ Systematic studies by E50 spectrometer
 - Beam measurement is essential for missing mass and decay measurement
High-momentum beam line for 2ndary beam

- High-intensity beam: \(> 1.0 \times 10^7 \text{ Hz} \, \pi \, (< 20 \text{ GeV/c})\)
 - Unseparated beam: \(\pi/K/p_{\text{bar}}\) : MHz K beam ⇔ 100 MHz \(\pi\) beam

- Beam timing measurement: Start timing
 ⇒ “Bottleneck” to increase beam intensity

\[
\text{Design Intensity [Hz] in spill (2.0 sec)}
\]

\[
\text{K/\pi \& p_{\text{bar}}/\pi \text{ ratio}}
\]

\@ 15 kW loss
High-momentum beam line for 2ndary beam

- High-intensity beam: \(> 1.0 \times 10^7 \) Hz \(\pi \) (< 20 GeV/c)
 - Unseparated beam: \(\pi/K/p_{\text{bar}} \): MHz K beam \(\Leftrightarrow \) 100 MHz \(\pi \) beam
- Beam timing measurement: Start timing \(\Rightarrow \) “Bottleneck” to increase beam intensity

- High-rate capability
- Good time resolution
High-rate Cherenkov timing detector: R&D status

Fine segment test
Signal processing method test
T0 detector

- Segment by Acrylic (PMMA)
 ⇒ Cross shape: X-type
 - Cherenkov angle direction
 - Suppress time spread
 - Both edge readout
 - ×2 light yield

- 3-mm width segment + MPPC
 - MPPC amplifier: ~10 ns width

⇒ Time resolution: $\Delta T \sim 50 \text{ ps(rms)}$
 - 3 MHz/segment ⇒ Achieved
 - No position dependence
 * Akaishi master thesis

* Limit: ~3 MHz/3-mm segment

⇒ < 1-mm width fine segment
 - Handle 100 MHz beam
T0 detector

- Segment by Acrylic (PMMA)
 ⇒ Cross shape: X-type
 - Cherenkov angle direction
 - Suppress time spread
 - Both edge readout
 - ×2 light yield

- 3-mm width segment + MPPC
 - MPPC amplifier: ~10 ns width

⇒ Time resolution: $\Delta T \sim 50$ ps (rms)
 - 3 MHz/segment ⇒ Achieved
 - No position dependence
 * Akaishi master thesis

* Limit: ~3 MHz/3-mm segment
⇒ < 1-mm width fine segment
 - Handle 100 MHz beam
Simulation: Radiator width dependence

- Fine segment simulation
 - Geant4: Optical photon
 - Realistic parameters: PMMA, MPPC and so on

- Normalization of # of p.e.
 - 3-mm radiator light yield data
 ⇒ Reflection probability of PMMA: 99.5%

- Light yield is decreased by fine segments.
 - ~16 p.e. @ 0.5 mm

- Smaller loss of fast components
 - Small number of reflections
 - Resolution is expected to be kept.

* Production by company
 - Cut from one PMMA board

⇒ Actual fine segment test
Fine segments of Cherenkov radiator

- Radiators can be fixed by Silicone sheet with glue and some wires.
Test experiment @ LEPS

• Purposes
 • **Fine segment test**
 • 1.0 mm and 0.5 mm segments
 • **New amplifier test**
 • **Signal processing test**
 • Schottky Barrier Diode filter circuit
 • Integration circuit for TOT

• **Time resolution evaluation by MIP**
 • e^\pm from γ-ray conversion
 • RF timing reference: $\Delta T \sim 14$ ps
 • Time walk correction by pulse height
 • Data taking: DRS4 and HUL HR-TDC

• **MPPC (s13360-3050PE) conditions:** $V_{ov} = +7V$
 • One p.e. pulse height: ~ 70 mV (amp gain: $\times 18.8$)
Number of photoelectrons

- Average: ~20 p.e.
- Light yield tendency of both edge is consistent.

T. Akaishi, Master thesis
Number of photoelectrons

- Average: ~20 p.e.
- Light yield tendency of both edge is consistent.

Handwriting curbs

T. Akaishi, Master thesis
Number of p.e.: @ +20 mm

\[38.7 \pm 0.4 \text{ p.e.} \quad (\sigma = 7.8 \text{ p.e.}) \]

\[38.6 \pm 0.7 \text{ p.e.} \quad (\sigma = 8.0 \text{ p.e.}) \]

\[40.4 \pm 0.5 \text{ p.e.} \quad (\sigma = 7.8 \text{ p.e.}) \]

• Sum of both edge and its distribution are same.
 \[\Rightarrow \] Collection of Cherenkov lights w/o surface loss
Time resolution: @ V\text{th} = 3.5 \text{ p.e.}

• All data: Similar time resolution of \(~45\) ps(rms).
 • Time resolution is kept. = Same light yield

*3.0 \text{ mm} \Rightarrow 0.5 \text{ mm}: \times 6 \text{ higher counting rate}
 • 3 MHz/3 mm @ 30 MHz \Rightarrow 3 MHz/0.5 mm @ 180 MHz

* RF ΔT \sim 14 \text{ ps(rms)} subtracted
1. Ringing suppression
 • Effects to time resolution by pile-up signal
 • Time resolution: 43 ps ⇒ 54 ps @ High-rate condition
 ⇒ Schottky Barrier Diode (SBD) was used as kind of filtering methods.

2. TOT measurement
 • Time-walk correction by Time-Over-Threshold (TOT) method
 • Width = (Leading edge – Trailing edge)
 • Only TDC measurement without ADC
 • Dead-time less digitalization for streaming DAQ
Schottky barrier diode: SBD

- Kind of rectifier diode
 - Quick responses
 - Smaller forward voltage: 100–200 mV level

*Revered pulses and smaller pulses are suppressed.
⇒ Ringing suppression

- BAT63: Series connection to amplifier
 - Signals width: Same
 - \(V_{\text{out}} = 0.62 \times (V_{\text{in}}) - 70.0 \) (Minimum input: ~120 mV)

![MPPC amp](image1)

![SBD circuit](image2)

![Series connection](image3)
• Similar time resolution of ~45 ps(rms).
 • W/SBD data showed little worse resolution.
 • Smaller pulse height affected by noise

• SBD can be used as filter circuit. ⇒ High-rate test
Time-Over-Threshold method

- Straight forward method cannot correct time-walk of leading edge.
 - Differential circuit for narrow signal width
 ⇒ Width is saturated in the higher pulse height region.

Extract pulse height information from width

⇒ Integration by slow shaping
 - SBD + slow shaping is essential.

- RC integration circuit
 - \(\tau = 2.4 \) ns
 - \(R = 51 \ \Omega, \ C = 47 \ \text{pF} \)
 - Signal width: \(~15\) ns
 - Original: \(~10\) ns
Time resolution: TOT method

- Width analysis showed similar resolution. @ Vth = 4.5 p.e.
 - Response is not completely understood by using amplifier w/ SBD and RC circuit.
 ⇒ Investigation of optimum time constant

⇒ Vth = 3.5 p.e. data
⇒ Correlation is almost same as of Vth = 4.5 p.e. data.
⇒ It is necessary to investigate.

* RF ΔT ~14 ps(rms) subtracted

By PH

By width

* Tail component
To do

* To finalize R&D and production of Cherenkov beam timing detector

- Tests in early 2020 are affected by COVID-19.
 - Segmented detector test by EMPHATIC @ Fermilab (Postponed by November)
 ⇒ Test at other facilities (LEPS, ELPH ?)
 - High-rate test @ ELPH ⇒ It will be performed in July(?) or October (?).
 + Test by mixed signal: Emulate pile-up events

- Investigate and optimization of filtering circuit
 - SBD and RC circuit

- Design of actual detector
 - Segment width size adjustment for beam profile
 - Simulation study for fixing radiators with good filling rate
 - MPPC array (TSV type) for assembling fine segments

- Publication plan
 - X-shape Cherenkov detector: 1st draft is under preparation.
 - High-rate measurement: Signal processing, TOT and so on
Summary

• Investigation of effective degree of freedom for hadrons
 • Systematic study: Charmed baryon \(\Leftrightarrow \Xi \) and \(\Omega \)

• \(K^- \) beam @ J-PARC High-\(p \) beam line
 • High-intensity \(K^- \) beam \(\Rightarrow \) Dominant \(\pi \) in unseparated beam
 • High-rate capability of beam timing detector: Fine segment beam detector

• R&D of Cherenkov timing detector
 • X-shape Acrylic radiator with thin width: 0.5 mm, 1.0 mm, 3.0 mm
 • Test experiment @ LEPS
 \(\Rightarrow \) Time resolutions of \(\sim 45 \) ps(rms) were kept by using fine segment radiators.
 • Availability of much higher counting rate beam: \(\times 6 \) higher rate
 • 3 MHz/3 mm @ 30 MHz \(\Rightarrow \) 3 MHz/0.5 mm @ 180 MHz
 • Filtering method test for suppressing ringing effects by SBD
 • High-rate test is necessary for finalizing R&D.
 • TOT method test: SBD + Integration circuit
 • It was found that measurement without ADC can be performed.

* To finalize R&D and production of Cherenkov beam timing detector
 • \(K^- \) beam intensity is as high intensity as possible at J-PARC high-momentum beam line.
 \(\Rightarrow \) To drive investigation of multi-strangeness baryons