Development of quantum chemical ab initio methods for accurate simulation of exotic molecules

第三回クラスター階層領域研究会 @東京工業大学(Zoom), on 18st May, 2020.

横浜市立大学 (Yokohama City Univ.) 大学院生命ナノシステム科学研究科・データサイエンス学部 立川 仁典 (Tachikawa Masanori)

- 2.1. Multi-Component Molecular Orbital (MC_MO)
- 2.2. Vibrational effect on PA
- 3. Results and discussion
 - 3.1. Vibrational PAs on HCN and H_2CO
 - 3.2. Origin of PAs Variation
 - 3.3. Vibrational PAs on CH₃CHO

4. Summary & Future plans

1.1. Introduction: Positron technolog

Positron (e⁺)

- ✓ Anti-particle of an electron (e⁻) mass= 1, spin=1/2, charge= +1 (atomic unit)
- ✓ Pair annihilation with an e^{-} and then two photons emission

Positron technologies

Cancer cell imaging High-sensitive detection of cancer cell in human body

http://www.shinyokohama.jp/

- PALS (Positron Annihilation Lifetime Spectroscopy)
- ACAR (Angular Correlation of Annihilation Radiation)
- PET (Positron Emission Tomography), etc

Vacancy detection

High-sensitive detection of vacancy or void in bulk crystals, polymers, etc.

陽電子計測の科学(日本アイソトープ協会) written in Japanese

Surface analysis

Accurate measurements of geometric and electronic structures on surface

KEK: http://www.kek.jp/ja/NewsRoom/Release/20131121140000/

Recently, positron *technologies* are widely used in various fields. However, the scientific knowledge about fundamental processes of positrons is still unclear at atomic/molecular levels !!

1.2. Experimental PA values !

Experimental side: [1]Danielson, Surko, et al. PRL. 104, 233201 (2010). Surko and co-workers [1] measured the positron binding to many molecules through vibrational Feshbach resonance (VFR), and estimated the binding energy of a positron (positron affinity, PA) from the difference between <u>VFR and IR spectra</u>

VFR and IR spectra for butane (C_4H_{10}) [1]

TABLE I: Measured and predicted positron- and electronmolecule binding energies ϵ_b (meV), permanent dipole moments μ (D) and dipole polarizabilities α (Å³) for selected molecules. Data for μ and α taken from Ref. [26]. Data from Figs. 1-4 in bold.

		$\epsilon_b \text{ (meV)}$								
Molecule	Formula	μ	α	posit	TODS	electrons ⁹				
		(D)	(Å ³)	meas.	pred.	meas.	pred.			
carbon disulf.	CS ₂	0	8.7	75		0.7				
butane	C ₄ H ₁₀	0	8.2	40 ^a						
methanol	CH ₃ OH	1.7	3.3	2^a						
methchloride	CH ₃ Cl	1.9	5.4	25^{a}						
formaldehyde	H ₂ CO	2.3	2.8		19 ^b		0.02			
acetaldehyde	(CH ₃)HCO	2.8	4.6	90		0.6	0.95			
acetone	(CH ₃) ₂ CO	2.9	6.4	173	4°	2.6	1.6			
propanal	$(C_2H_8)HCO$	2.7	6.5			1.0	0.6			
hydr. cyanide	HCN	3.0	2.5		35 ^d	4	3.3			
acetonitrile	CH ₃ CN	3.9	4.4	180	135^{c}	19	15.5			
lith. hydride	LiH	5.9	3.8		1000 ^f	342	330			
^a Ref. [11], ^b Ref. [5], ^c Ref. [8], ^d Refs. [6, 7], ^c Ref. [15], ^f Ref. [3],										

^gMeas. from Refs. [25, 27–29], pred. from Refs. [25, 30].

 $= E(\mathbf{X}) - E(\mathbf{X})$

Theoretical elucidation of molecular vibrational effect on positron affinity (PA) values for polyatomic molecules.

 Theoretical analysis of molecular PA values including the effect of molecular vibrations (*vibrational averaged positron affinity*: PA_v)

 $\mathbf{PA}_{n}^{\mathbf{A}} = \mathbf{\hat{0}} d\mathbf{Q} \Big\{ E^{\mathbf{A}}(\mathbf{Q}) - E^{[\mathbf{A};\mathbf{e}^{+}]}(\mathbf{Q}) \Big\} \Big| \mathbf{y}_{n}^{\mathbf{A}}(\mathbf{Q}) \Big|^{2}, \quad \mathbf{Q}: \text{ normal mode coordinate}$

The PA_v corresponds to the PA value at quantum vibrational states

✓ Application to hydrogen cyanide (HCN), formaldehyde (H₂CO), and acetaldehyde (CH₃CHO), toward future works for larger molecules.

· Allti-Component MO (MC_MO) method

✓ Total Hamiltonian for a positron-attached molecule:

The non-relativistic Hamiltonian (with atomic unit) of a positron-attached system consisting of M nuclei, N electrons, and a positron is given by

 ✓ Configuration interaction (CI) method for a positron-attached molecule^[1]

$$\Psi_{\rm CI}(\mathbf{R}_{\rm e},\mathbf{r}_{\rm p}) \rangle = C_{(0,0)} \Big| \Phi_0^{\rm e}(\mathbf{R}_{\rm e}) \rangle \Big| \varphi_0^{\rm p}(\mathbf{r}_{\rm p}) \rangle + \sum_{L_{\rm e}} \sum_{L_{\rm p}} C_{(L_{\rm e},L_{\rm p})} \Big| \Phi_{L_{\rm e}}^{\rm e}(\mathbf{R}_{\rm e}) \rangle \Big| \varphi_{L_{\rm p}}^{\rm p}(\mathbf{r}_{\rm p}) \rangle,$$

$$= \sum_{L_{\rm e}} F_{L_{\rm e}}^{\rm e}(\mathbf{R}_{\rm e}): \text{ electronic Slater determinant,} \qquad C_{(L_{\rm e},L_{\rm p})}: \text{ CI coefficients}$$

$$f_{L_{\rm p}}^{\rm p}(\mathbf{r}_{\rm p}): \text{ a positronic molecular orbital,}$$

[1] M.Tachikawa, H.Sainowo, K.Iguchi, and K.Suzuki J. Chem. Phys. 101 5925 (1994).

Configuration interaction (CI) method for positronic compounds^[1]

We confirmed that our PA values with **CISD calculation by MC_MO** are in reasonable agreement with those by very accurate **diffusion Monte Carlo (DMC)** ones^[2,3].

[1] M.Tachikawa, H.Sainowo, K.Iguchi, and K.Suzuki; J. Chem. Phys. 101, 5925 (1994).
 [2] Y. Kita and M Tachikawa, Euro. Phys. J. D 68, 116 (2014).
 [3] Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014).

2.2. Vibrational effect on PA

✓ Vibrational averaged PA values^[1]

We estimated "*vibrational averaged* **PA values**", which correspond to the PA value on molecular vibrational state.

$$PA_{\nu}^{A} = \int dQ \left\{ E^{A}(Q) - E^{[A;e^{+}]}(Q) \right\} \psi_{\nu}^{A}(Q) \Big|^{2},$$

Q: normal mode coordinate

 $E^{A}(Q) - E^{[A;e^{+}]}(Q): \text{ vertical PA at } Q \Rightarrow \text{ by MC_MO (CISD) method [1]}$ $\mathcal{Y}_{n}^{A}: \text{v-th vibrational wave function} \Rightarrow \text{ by vibrational QMC method [2,3]}$ $\hat{0}^{d}Q: \text{ integration over configuration space} \Longrightarrow \text{ by Monte Carlo integration} \text{ (Metropolis method)}$

[1] M.Tachikawa, H.Sainowo, K.Iguchi, and K.Suzuki; J. Chem. Phys. **101**, 5925 (1994). [2] Y. Kita and M Tachikawa, Euro. Phys. J. D **68**, 116 (2014). [3] Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A **89**, 062711 (2014).

• 公立大学法人横浜市立大学

3.1. Vibrational PA values of HCN

In this modeling, we assumed that the interaction energy between a positron (+1 charge) and the parent molecule linearly depends on d, Q, and α .

e.g. dipole :
$$\frac{1}{4\rho e_0 r^2} \mathbf{r} \times \mathbf{d}$$
 (or $\mathbf{d}^{\mathrm{I}} = \mathbf{\alpha} E^{\mathrm{P}}$), quadrupole : $\frac{3}{8\rho e_0 r^3} \mathop{\otimes}\limits_{i,j}^{x,y,z} \mathcal{Q}_{ij} r_i r_j$

It is strongly expected that the linear regression analysis (LRA) using d, Q, and α of the parent molecule can be useful for explaining the origin of PA variations.

 $PA_{LRA} = c_m M_v + c_Q Q_v + c_a \partial_v + c_0, \qquad M_v, Q_v, \partial_v: \text{ vibrational averaged } \mu, Q, \text{ and } \alpha \text{ at each state}$

- ✓ For both molecules, the PA variations are well described by the change in both the multipole moment and dipole-polarizability.
- ✓ In the linear regression analyses, the dipole (μ) model gives the largest R^2 values for both molecules.

The origin of PA variations is mainly the change in the multipole moment by vibrational excitations

1.2. Experimental PA values !

Experimental side: [1]Danielson, Surko, et al. PRL. 104, 233201 (2010). Surko and co-workers [1] measured the positron binding to many molecules through vibrational Feshbach resonance (VFR), and estimated the binding energy of a positron (positron affinity, PA) from the difference between <u>VFR and IR spectra</u>

VFR and IR spectra for butane (C_4H_{10}) [1]

TABLE I: Measured and predicted positron- and electronmolecule binding energies ϵ_b (meV), permanent dipole moments μ (D) and dipole polarizabilities α (Å³) for selected molecules. Data for μ and α taken from Ref. [26]. Data from Figs. 1-4 in bold.

	Formula	$\epsilon_{\rm b} \ ({\rm meV})$							
Molecule		μ	α.	posit	rons	electr	electrons ⁹		
		(D)	(Å ³)	meas.	pred.	meas.	pred.		
carbon disulf.	CS ₂	0	8.7	75		0.7			
butane	C ₄ H ₁₀	0	8.2	40ª					
methanol	CH ₃ OH	1.7	3.3	2^a					
methchloride	CH ₃ Cl	1.9	5.4	25 ^a					
formaldehyde	H ₂ CO	2.3	2.8		19 ^b		0.02		
acetaldehyde	(CH ₃)HCO	2.8	4.6	90		0.6	0.95		
acetone	$(CH_3)_2CO$	2.9	6.4	173	4°	2.6	1.6		
propanal	$(C_2H_8)HCO$	2.7	6.5			1.0	0.6		
hydr. cyanide	HCN	3.0	2.5		35 ^d	4	3.3		
acetonitrile	CH ₃ CN	3.9	4.4	180	135^{c}	19	15.5		
lith. hydride	LiH	5.9	3.8	1	1000 ^f	342	330		
^a Ref [11] ^b Ref [5] ^c Ref [8] ^d Refs [6, 7] ^c Ref [15] / Ref [3]									

"Ref. [11], "Ref. [5], "Ref. [8], "Refs. [6, 7], "Ref. [15], "Ref. [3] "Meas. from Refs. [25, 27–29], pred. from Refs. [25, 30].

4. Summary

To elucidate the molecular vibrational effect on positron affinities (PAs), we analyzed the vibrational averaged positron affinity of HCN, H_2CO , and CH_3CHO molecules at various vibrational excited states.

- ✓ The largest PA enhancement are found for the vibrational excitation of CH stretching mode for HCN, and that of C=O stretching mode for H₂CO
- The PA variations mainly arises from the change in the multipole moment and dipole-polarizability by vibrational excitations
- The change in permanent dipole moments is dominant in the PA variations.
- ✓ In CH₃CHO molecule, the vibrational averaged PA values for the C-H and C=O stretching modes are 82 and 94 meV, respectively, which can be compared with the corresponding experimental PA value of 90meV.

立川仁典 第4回分子科学国際学術賞受賞

坂上弘輝(M1) JEMS 2019ベストプレゼンテーション賞

