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Low-energy nuclear reaction
– Macroscopic model
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–How good/bad is this?



Nuclear reaction with shape evolution

• Low-energy nuclear reaction
– Relative motion between two nuclei
– Shape change

! ! !

Is the relative coordinate ! meaningful?



Nuclear reaction with shape evolution

• One-to-one correspondence
– ! can be a choice to define the scale of the 

coordinate.
– ! affects the inertial masses

! ! !

Relative distance: #(!)~'! (! → ∞)
Orientation: *(!)~2'!!" (! → ∞)



Inertial mass
• A particle moving                             

along the ! axis
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Effect of “effective mass”

• Velocity-dependent potential
• Nucleonic effective mass
– &∗

&
~0.7 − 0.8

• Does this affect the inertial mass of 
nuclear reaction?
– # ! , * ! → '! , 2'!!" ×

&∗

&
?, at ! → ∞



Construction of macroscopic model

Model Hamiltonian
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Microscopically calculating < ! ,# ! , *(!)

Can we reproduce the following asymptotic values 
at ! → ∞?
How good is the usage of these values?

# ! = '! , * ! = '!!"



ASCC method

• Optimal reaction path based on TDHF 
dynamics

• Inertial masses with residual effect beyond 
mean fields (cf. Thouless-Valatin)
– Neglecting the residual effect

– Cranking formula for collective masses
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FIGURE 2 | (Left panel) Calculated density distributions of four points on the ASCC collective fusion path α+α→8Be. Inset (A) shows the density distribution of two

well separated alpha particles at R = 6.90 fm, inset (D) is the ground state of 8Be at R = 3.55 fm. Inset (B,C) show the density distributions at R = 4.10 fm, 5.40 fm,

respectively. Those on the y − z plane are plotted. (Right panel) Potential energy as a function of R shown by the red curve. The blue the dashed line is calculated as

4e2/R+ 2Eα for reference.

The reduced mass µred is justifiable when two alpha particles
are well separated. However, it loses its validity as two particles
approach each other. A widely used approach to calculate inertial
mass for nuclear collective motion is the “Constrained-Hartree-
Fock-plus-cranking” (CHF+cranking) approach [26]. In this
approach, the collective path is produced by the CHF calculation
with a constraining operator Ô given by hand, and the inertial
mass is calculated based on the cranking formula with respect
to these CHF states. The formula for the cranking mass can be
derived by the adiabatic perturbation [6]. In the present case of
the one-dimensional motion, based on the states constructed by
the CHF calculation with a given constraining operator Ô, the
cranking formula reads [26]

MNP
cr (R) = 2

∑

n∈p,j∈h

|〈ϕn(R)|∂/∂R|ϕj(R)〉|2

en(R)− ej(R)
, (14)

where the single-particle states ϕµ and their energies eµ are

defined with respect to hCHF(λ) = hHF[ρ]− λÔ,

hCHF(λ)|ϕµ(λ)〉 = eµ(λ))|ϕµ(λ)〉, µ ∈ p, h. (15)

We may use any operator Ô as a constraint, as far as
it can generate the states with all the necessary values of
R = 〈R̂〉. However, obviously the inertial mass M(R)
depends on this choice, which is one of drawbacks of the
CHF+cranking approach.

In most of the reaction models, the inertial mass with respect
to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
Ô; the mass quadrupole operator Q̂20 and the relative distance R̂
operator of Equation (10). The model space for both calculations
are the same. As we can see from Figure 3, at large distance,

FIGURE 3 | (Color online) Inertia masses MR for the reaction α+α↔8Be as a

function of relative distance R. The solid (red) curve indicates the result of

ASCC. The other curves show the cranking masses of Equation (14)

calculated based on CHF states. The dotted (green) and dash-dotted (blue)

lines indicate the results with constraints on R̂ and Q̂20, respectively.

both methods asymptotically reproduce the reduced mass of 2m,
which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
mass, especially at around R = 4.7 fm where all the three masses
develop a bump structure.

The difference between the ASCC and the cranking masses
attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
fluctuation. Another is that the constraining operators affect the
single-particle energies eµ(R). We also note that the cranking
masses obtained with different constraints give very different
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3D real space representation
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• 3D space discretized in lattice
• BKN functional: =+,-[?, @] (rather schematic)
• Moving mean-field eq.: Imaginary-time method
• Moving RPA eq.： Finite amplitude method (PRC 

76, 024318 (2007) )
At a moment, no pairing

1-dimensional reaction path 
extracted from the Hilbert space of 
dimension of 104 ~105.
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well separated alpha particles at R = 6.90 fm, inset (D) is the ground state of 8Be at R = 3.55 fm. Inset (B,C) show the density distributions at R = 4.10 fm, 5.40 fm,

respectively. Those on the y − z plane are plotted. (Right panel) Potential energy as a function of R shown by the red curve. The blue the dashed line is calculated as

4e2/R+ 2Eα for reference.

The reduced mass µred is justifiable when two alpha particles
are well separated. However, it loses its validity as two particles
approach each other. A widely used approach to calculate inertial
mass for nuclear collective motion is the “Constrained-Hartree-
Fock-plus-cranking” (CHF+cranking) approach [26]. In this
approach, the collective path is produced by the CHF calculation
with a constraining operator Ô given by hand, and the inertial
mass is calculated based on the cranking formula with respect
to these CHF states. The formula for the cranking mass can be
derived by the adiabatic perturbation [6]. In the present case of
the one-dimensional motion, based on the states constructed by
the CHF calculation with a given constraining operator Ô, the
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it can generate the states with all the necessary values of
R = 〈R̂〉. However, obviously the inertial mass M(R)
depends on this choice, which is one of drawbacks of the
CHF+cranking approach.

In most of the reaction models, the inertial mass with respect
to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
Ô; the mass quadrupole operator Q̂20 and the relative distance R̂
operator of Equation (10). The model space for both calculations
are the same. As we can see from Figure 3, at large distance,
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calculated based on CHF states. The dotted (green) and dash-dotted (blue)

lines indicate the results with constraints on R̂ and Q̂20, respectively.

both methods asymptotically reproduce the reduced mass of 2m,
which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
mass, especially at around R = 4.7 fm where all the three masses
develop a bump structure.

The difference between the ASCC and the cranking masses
attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
fluctuation. Another is that the constraining operators affect the
single-particle energies eµ(R). We also note that the cranking
masses obtained with different constraints give very different

Frontiers in Physics | www.frontiersin.org 5 February 2020 | Volume 8 | Article 16

# ! → '! (! → ∞)

Wen and Nakatsukasa Collective Inertial Masses

FIGURE 2 | (Left panel) Calculated density distributions of four points on the ASCC collective fusion path α+α→8Be. Inset (A) shows the density distribution of two

well separated alpha particles at R = 6.90 fm, inset (D) is the ground state of 8Be at R = 3.55 fm. Inset (B,C) show the density distributions at R = 4.10 fm, 5.40 fm,
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4e2/R+ 2Eα for reference.
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the one-dimensional motion, based on the states constructed by
the CHF calculation with a given constraining operator Ô, the
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both methods asymptotically reproduce the reduced mass of 2m,
which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
mass, especially at around R = 4.7 fm where all the three masses
develop a bump structure.

The difference between the ASCC and the cranking masses
attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
fluctuation. Another is that the constraining operators affect the
single-particle energies eµ(R). We also note that the cranking
masses obtained with different constraints give very different
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cranking formula reads [26]

MNP
cr (R) = 2

∑

n∈p,j∈h

|〈ϕn(R)|∂/∂R|ϕj(R)〉|2

en(R)− ej(R)
, (14)

where the single-particle states ϕµ and their energies eµ are

defined with respect to hCHF(λ) = hHF[ρ]− λÔ,
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to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
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which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
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attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
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We may use any operator Ô as a constraint, as far as
it can generate the states with all the necessary values of
R = 〈R̂〉. However, obviously the inertial mass M(R)
depends on this choice, which is one of drawbacks of the
CHF+cranking approach.

In most of the reaction models, the inertial mass with respect
to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
Ô; the mass quadrupole operator Q̂20 and the relative distance R̂
operator of Equation (10). The model space for both calculations
are the same. As we can see from Figure 3, at large distance,

FIGURE 3 | (Color online) Inertia masses MR for the reaction α+α↔8Be as a

function of relative distance R. The solid (red) curve indicates the result of

ASCC. The other curves show the cranking masses of Equation (14)

calculated based on CHF states. The dotted (green) and dash-dotted (blue)

lines indicate the results with constraints on R̂ and Q̂20, respectively.

both methods asymptotically reproduce the reduced mass of 2m,
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particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
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develop a bump structure.
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FIGURE 4 | Relative inertial masses in the presence of time-odd mean-field potential for the reaction α+α↔8Be as a function of relative distance R. The results of the

cranking masses are shown in the left panel and those of the ASCC method are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves

show the results calculated with B3 = 0, 25, and 75 MeV fm5, respectively.

values. This is true even at the HF ground state (R = 3.55
fm), in which the single-particle states |ϕµ(R) and their single-
particle energies eµ(R) are all identical to each other. This is
because the derivative ∂/∂R gives different values, since the
different constraint produces different states away from the HF
ground state. This ambiguity exposes another drawback of the
CHF+cranking approach, while the ASCCmass has an advantage
that the collective coordinate as well as the wave functions are
self-consistently calculated rather than artificially assumed.

3.4. Impact of Time-Odd Potential
All the results shown so far are obtained with the standard BKN
energy density functional that has no derivative terms. Therefore,
the nucleon’s effective mass is identical to the bare nucleon mass.
However, most of realistic effective interactions have effective
mass smaller than the bare mass, typically m∗/m ∼ 0.7. In such
cases, an improper treatment of the collective dynamics leads to a
wrong answer for the collective inertial mass [27]. This change in
the effectivemass typically comes from the term ρτ in the Skyrme
energy density functional, which should accompany the term−j2

to restore the Galilean symmetry [27, 28]. These terms are absent
in the standard BKN functional.

To investigate the effect of the time-odd mean-field potential
on the collective inertial mass, we add the term B3(ρτ − j2) to
the original BKN energy density functional. The modified BKN
energy density functional reads,

E[ρ] =
∫

1

2m
τ (r)dr+

∫

dr

{

3

8
t0ρ

2(r)+ 1

16
t3ρ

3(r)

}

+
∫ ∫

drdr′ρ(r)v(r− r′)ρ(r′)

+B3

∫

dr
{

ρ(r)τ (r)− j2(r)
}

(16)

where ρ(r), τ (r), and j(r) are the isoscalar density, the isoscalar
kinetic density, and the isoscalar current density, respectively. In
Equation (16), v(&r) is the sum of the Yukawa and the Coulomb

potentials [25]. The variation of the total energy with respect
to the density (or equivalently single-particle wave functions)
defines the single-particle (Hartree-Fock) Hamiltonian. In the
present case, the single-particle Hamiltonian turns out to be

h[ρ] = −∇ 1

2m∗(r)
∇ + 3

4
t0ρ(r)+

3

16
t3ρ

2(r)

+
∫

dr′v(r− r′)ρ(r′),

+B3(τ (r)+ i∇ · j(r))+ 2iB3j(r) · ∇ (17)

where the effective mass is now deviated from bare nucleon mass

h̄2

2m∗(r)
= h̄2

2m
+ B3ρ(r). (18)

For the time-even states, such as the ground state of even-even
nuclei, the current density disappears, j = 0. Even though, these
terms play an important role in the collective inertial mass. The
parameter B3 (= 0 provides the effective mass and the time-
odd effect. The rest of the parameters are the same as those in
reference [25].

To examine the impact of the time-odd terms on the inertial
mass, in Figure 4 we show M(R) calculated with and without
the B3 term. When the time-odd terms are absent, B3 = 0,
both the ASCC and the cranking formula reproduce the α + α

reduced mass in the asymptotic limit (R → ∞). However, the
cranking formula fails to do so with B3 (= 0. As the value of B3
increases, the asymptotic cranking mass decreases. This can be
naively expected from the reduction of the effective mass from
the bare mass. In contrast, the ASCC inertial mass converges to
the correct reduced mass, no matter what B3 values are. This
means that the ASCC method is capable of taking into account
the time-odd effect and recovering the exact Galilean symmetry.

Another inertial mass indispensable in the collective
Hamiltonian of nuclear reaction models is the rotational
moments of inertia. The rotational motion is a Nambu-
Goldstone (NG) mode. To calculate this, we utilize a method
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FIG. 4. (Color online) Inertial mass MR for the reaction path
α+16O in the presence of time-odd mean-field potential as a
function of R, in the unit of nucleon mass. The upper panel
shows the results of ASCC inertial masses, where the thicker
(red), medium thick (green) and thinner (blue) curves show
the results calculated with B3 = 0, 25, 75 MeV fm5 respec-
tively. The lower panel shows the results of nonperturbative
and perturbative cranking inertial masses, where the solid,
dashed and dotted curves show the results calculated with
B3 = 0, 25, 75 MeV fm5 respectively, the thicker (red) and
thinner (blue) curves indicate the results of nonperturbative
and perturbative cranking inertial masses.

For both the systems in Fig. 4 and Fig. 5, as the
two nuclei get closer, the ASCC inertial masses show a
drastic increase, that is due to the increase of value dq/dR
in Eq. (6). For the reaction α+16O →20Ne, the non-
perturbative cranking mass shows similar pattern to that
of ASCC. The perturbative cranking mass for α+16O
→20Ne and both the cranking masses for 16O+16O →32S
are significantly different from that of ASCC except in
the asymptotic region. At the same time the perturbative
and non-perturbative cranking masses turn out to give
different values. The ambiguity of cranking masses has
been discussed in our previous work[31].

At large R, The reduced mass, µred = 3.2m for α+16O
→20Ne and µred = 8m for 16O+16O →32S are well repro-
duced by the ASCC method regardless of the existence
or the strength of the time-odd mean-field potential. A-
gain the two cranking formulae don’t show this proper-
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FIG. 5. (Color online) Inertial mass MR for the reaction path
16O+16O in the presence of time-odd mean-field potential as
a function of R, in the unit of nucleon mass. The upper panel
shows the results of ASCC inertia masses, where the thick-
er (red) and thinner (blue) curves show the results calculated
with B3 = 0, 30 MeV fm5 respectively. The lower panel shows
the results of nonperturbative and perturbative cranking in-
ertial masses, where the solid and dashed curves show the
results calculated with B3 = 0, 30 MeV fm5 respectively, the
thicker (red) and thinner (blue) curves indicate the results of
nonperturbative and perturbative cranking inertial masses.

ty, both the perturbative and non-perturbative cranking
masses can only reproduce the asymptotic inertial mass-
es if the time-odd mean-field is absent, once the B3 get
a finite value, the result start to decrease and deviate
from the correct results. The inclusion of time-odd po-
tential enlarges the size of the nuclei, the touching points
between the two nuclei occurs at larger R, thus as B3

increases, the steep increase of ASCC results as well as
the oscillating patterns both shift towards the right.

B. Rotational inertia

Next we shift to another indispensable inertial mass in
the collective Hamiltonian, the rotational inertia. Unlike
the relative motion, rotational motion is a Nambu Gold-
stone mode. As mentioned in Sec. II A, the rotational
inertia is obtained by calculating the response strength at
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3

-60

-40

-20

 0

 20

 40

 60

 80

 4  4.5  5  5.5  6  6.5  7  7.5  8

ω
2  [M

eV
2 ]

R [fm]

FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIGURE 5 | Rotational moments of inertias in the presence of time-odd mean-field potential for the system α+α as a function of relative distance R. The results of

cranking formula are shown in the left panel and the results of ASCC are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves show the

results calculated with B3 = 0, 25, 75 MeV fm5, respectively, as labeled in the figure.

proposed in the reference [29], where the inertial masses of
the NG modes are calculated from the zero-frequency linear
response with the momentum operator of the NG modes. The
formulation has been tested in the cases of translational and
pairing rotational modes, showing high precision and efficiency.
Based on the collective path obtained, we apply this technique to
calculate the rotational moments of inertia.

In Figure 5, the calculated moments of inertias are presented.
With B3 = 0, the moments of inertia calculated with the ASCC
and with the cranking formula well agree with each other in the
asymptotic region of large R. The value is equal to the point-mass
approximation in which the point α particles are assumed at the
center of mass of each α particle. However, when non-zero B3
comes in, the cranking mass formula can no longer reproduce
this asymptotic value. Similar to the case of relative motion, as
the value of B3 increases, the asymptotic moments of inertia
decrease and deviate from the asymptotic value. In contrast, the
ASCC method provides the moments of inertia almost invariant
with respect to the B3 values. These results show again that,
compared with the cranking formula, the ASCC method gives
the collective inertial masses by properly taking into account the
time-odd effects.

4. SUMMARY AND DISCUSSION

Based on the ASCC theory, we presented a method to
determine the collective reaction path for the nuclear reaction
as the large amplitude collective motion. This method is
applied to the fusion/fission α+α↔8Be, using the BKN energy
density functional. In the three-dimensional coordinate-space
representation, the reaction path, the collective potential, as
well as the inertial masses are self-consistently calculated. We
compare the ASCC results with those of the CHF+cranking
method. Since the reaction system is very simple, there is no
significant difference between the calculated CHF reaction paths
with different constraint operators. Despite of this similarity in
the CHF states, the inertial masses calculated with the cranking

formula turn out to sensitively depend on the choice of the
constraint operator. The ASCC method is able to remove this
ambiguity in the inertial mass, by taking into account the residual
effects caused by the density fluctuation.

We add a term, which introduce the effective mass and time-
odd mean fields, to the standard BKN energy density functional,
to examine the effect of these terms on the inertial masses for
both the relative and rotational motions. In the presence of time-
odd term, the cranking formula fails to preserve the correct
asymptotic values, while the validity of ASCCmass is not affected
by the introduction of the effective mass. The time-odd mean-
fields properly recover the Galilean symmetry, leading to the
exact values of the asymptotic inertial mass. This is found to be
true in both relative and rotational motions. With this property,
we are quite confident that the ASCC method is promising to
be applied to the modern nuclear energy density functionals,
and make advanced microscopic theoretical analysis on various
nuclear reactionmodels. Another important issue is the inclusion
of the paring correlation, which may influence not only static
but also dynamical nuclear properties. In order to keep the
lowest-energy configuration during the collective motion, the
pairing interaction is known to play a key role [30]. Therefore,
we may expect significant impact on both the collective inertial
masses and the reaction paths. To study the above issues are our
future tasks.
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zero energy with the angular momentum operator as the
external field. When calculating the response strength
function, the IFAM method is performed based on the
collective motion path obtained by the ASCC method.
We also apply the cranking formula to calculate the ro-
tational inertia, in this section we only apply the non-
perturbative one Eq. (10), where ∂/∂C can be replaced
by the angular momentum operator L̂.
At the same time we calculate the rotational iner-

tias under the asymptotic point-mass approximation and
rigid-body approximation. About x axis the asymptotic
point-mass approximation gives the value J red

x = µredR2

and the rigid body rotational inertia about x axis turns
out to be

Jx =

∫
(y2 + z2)ρ(r)dr. (19)

Taking the same reaction systems α+16O →20Ne and
16O+16O →32S as examples, Fig. 6 shows the rotation-
al inertias calculated using different methods for the t-
wo systems without time-odd mean-field. For the sys-
tem α+16O →20Ne, the ground state is at R = 3.8 fm,
where the non-perterbertive cranking formula and the I-
FAM calculation give the same results. For the system
16O+16O→32S shown in the lower panel, the ASCC path
couldn’t lead the two 16O fuse into the ground state of
32S, while it passes a super deformed state at a mini-
mum on the potential surface at R = 5.0 fm, where the
non-perterbertive cranking formula and the IFAM calcu-
lation also give the same results. At the Hartree-Fock
energy minimum the IFAM inertial mass corresponds to
the Thouless-Valatin mass[11], for the ground state or
the super deformed state, the contribution from densi-
ty fluctuation is small, thus the IFAM mass reduces to
cranking mass.
We see that the rotational inertia of the non-

perturbative cranking formula and IFAM are quite close
to each other for both systems. In the approaching
phase at 4.2 fm< R < 7 fm for α+16O →20Ne and 5.0
fm< R < 7.5 fm for 16O+16O →32S both are in be-
tween the point-mass values and the rigid-body values.
We find that the rigid-body inertia is noticeably larger
than the point-mass approximation, it couldn’t reduce to
the point-mass value in the discussed region. In Fig. 6 at
large R, both the IFAM and cranking masses are almost
identical to that of the point-mass approximation rather
than the rigid-body calculation.
The above calculations are done with B3 term equal

to zero. Next we check the influence of B3 term on the
rotational inertia. Fig. 7 shows the results of IFAM and
non-perturbative cranking formula for the two reactions.
Again as a finite B3 term comes in, for both systems we
see the cranking values can not preserve the asymptotic
values of point-mass approximation. While in the case of
IFAM, the inclusion of time-odd mean-field terms does-
n’t change the result very much, the rotational inertia
turns out to be insensitive to the time-odd component of
the mean-field potential. In the asymptotic region, the
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FIG. 6. (Color online) Rotational moments of inertias cal-
culated in different ways as a function of relative distance
R. The upper panel shows the results for the system α+16O,
the lower panel shows the results for the system 16O+16O.
The solid (red), dashed (pink), dotted (blue) and dash-dotted
(green) curves indicate the results of IFAM, non-perturbative
cranking formula, rigid body approximation, and point-mass
approximation respectively.

IFAM results preserve the asymptotic values no matter
the time-odd terms are present or not.

C. Impact on S factors

The inertial masses are decisive factors in the collective
Hamiltonian and may play important roles in the descrip-
tion of nuclear fusion/fission dynamics. In the present
work, with the above inertial masses for the relative and
rotational motions obtained, we further investigate the
dependence of the sub-barrier fusion cross sections on
these inertial masses. In the following calculations we
switch off the time-odd potential and focus on the im-
pact of inertia masses obtained with different methods.
From Fig. 6 we have seen that without time-odd po-
tential the cranking rotational inertias are very close to
those of ASCC, cranking formulae are not applied in the
following calculaitons.

The ASCC calculation provided us the collective
Hamiltonian on the optimal reaction path. Using this,

Moment of inertia

Smooth transition from */2321 to */01.

ASCC

Rigid body
Reduced

Ground state of 20Ne

*/01
= '!

!"
*(!)

&

43 163

KAI WEN AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 96, 014610 (2017)

(c)

-8 -6 -4 -2  0  2  4  6  8
z [fm]

-4
-2
 0
 2
 4

x 
[fm

]

(a)

-8 -6 -4 -2  0  2  4  6  8

-4
-2
 0
 2
 4

x 
[fm

]

(d)

-8 -6 -4 -2  0  2  4  6  8
z [fm]

-4
-2
 0
 2
 4

(b)

-8 -6 -4 -2  0  2  4  6  8

-4
-2
 0
 2
 4

FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3

-60

-40

-20

 0

 20

 40

 60

 80

 4  4.5  5  5.5  6  6.5  7  7.5  8

ω
2  [M

eV
2 ]

R [fm]

FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 7. (Color online) Rotational moments of inertias in the
presence of time-odd mean-field potential as a function of rel-
ative distance R. The upper panel shows the results for the
system α+16O, the lower panel shows the results for the sys-
tem 16O+16O. The dotted curves show the results of non-
perturbative cranking formula, where the chicker (blue) and
thinner (green) ones indicate the calculations with B3 = 0, 30
MeV fm5. The solid curves show the results of ASCC, where
the chicker (red) and thinner (pink) ones indicate the calcu-
lations with B3 = 0, 30 MeV fm5 as labeled in the figure.

we demonstrate the calculation of sub-barrier fusion cross
section for 16O+α→ 20Ne and 16O+16O→32S. We follow
the procedure in Ref. [32]. The total sub-barrier fusion
cross section is contributed by all the quantized partial
waves with angular moment L. Under the WKB approx-
imation, the transmission coefficient for the partial wave
L at incident energy Ec.m. is given by

TL(Ec.m.) = [1 + exp(2IL)]
−1, (20)

with

IL(Ec.m.) =

∫ b

a
dR

{
2M(R)

×
(
V (R) +

L(L+ 1)

2J(R)
− Ec.m.

)}1/2
, (21)

where a and b are the classical turning points on the inner
and outer sides of the barrier respectively. In the above
formula we see the coordinate dependent coefficients of
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FIG. 8. (Color online) The astrophysical S factor for the sub-
barrier fusion of 16O+α (upper panel) and 16O+16O (lower
panel), as a function of incident energy Ec.m.. The dotted
(blue) lines are calculated with the constant reduced mass
M red for the relative degree of freedom, and the rotational in-
ertia of point-mass approximation Jred. The solid and dashed
lines (red) indicate the results obtained with the ASCC iner-
tial mass M(R) and different choices of the rotational inertias
of point-mass approximation, rigid-body approximation and
IFAM as labeled in the figure.

inertial mass for the relative motion M(R) and the rota-
tional moment of inertia J(R) are needed as input, the
term L(L+1)/2J(R) represents the centrifugal potential.

The fusion cross section is given by

σ(Ec.m.) =
π

2µredEc.m.

∑

L

(2L+ 1)TL(Ec.m.). (22)

For identical incident nuclei, Eq. (22) must be modified
according to the proper symmetrization. Only the partial
wave with even L contribute to the cross section as

σ(Ec.m.) =
π

2µredEc.m.

∑

L

[1 + (−)L](2L+ 1)TL(Ec.m.).

(23)

In practical applications, M(R) is often approximated
as the constant reduced mass µred, and the centrifugal
potential is approximated as L(L + 1)/(2µredR2). Here
we apply the inertial masses obtained in the previous sec-
tions to investigate how much the result will be improved
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Summary

• Self-consistent description of nuclear reaction 
path and dynamics
– Reaction path affects the inertial mass
– Effective mass is canceled by the residual effect in 

the asymptotic region (the cranking formula fails)
– Vanishing MoI in spherical nuclei (quantum effect) 

is properly taken into account
– Reduction of astrophysical S-factor
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