28-May-2020/ On-line

K-MESON AND E-PARTICLE CLUSTERS

T. Nagae (Kyoto University)

BO1

Introduction

- K-meson Clusters
 - > К-рр
 - **>** ∧*(1405)p
 - E05: ¹²C(K⁻, p) analysis
- E-clusters
 - E-n bound state
 - ► E05: ¹²C(K⁻, K⁺) = Ehyp.

CLUSTERS AT HADRON LEVEL

- Hadrons = Clusters of Quarks
 - No single quark in vacuum : quark has color
 - > No (qq) cluster in vacuum \Leftrightarrow di-quark cluster in qqq, ...
 - Baryons (qqq) + Mesons (q \bar{q})
 - > But why not $qq\bar{q}\bar{q}$, $qqqq\bar{q}$ at quark level : Exotic Hadrons
 - Recent observations of Pc, X(3872), d*(2380), etc.
- > We can have "Hadron Clusters" as bound states of hadrons

Quark Confinement

State	$M \;[\mathrm{MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} \substack{3.7 \\ 4.5}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Figure 6: Fit to the $\cos \theta_{Pc}$ -weighted $m_{J/\psi p}$ distribution with three BW amplitudes and a sixth-order polynomial background. This fit is used to determine the central values of the masses and widths of the P_c^+ states. The mass thresholds for the $\Sigma_c^+ \overline{D}^0$ and $\Sigma_c^+ \overline{D}^{*0}$ final states are superimposed.

$\Pi (K) IN NUCLEI \Leftrightarrow \Delta (\Lambda^*) IN NUCLEI$

HADRON CLUSTERS

> Binding mechanism : Hadron-Hadron Interactions

K in Nucleus

K-pp cluster

K-MESON CLUSTER

J-PARC E05 by Y. Ichikawa

An event excess observed in the deeply bound region of ${}^{12}C(K^-, p)$ missing-mass spectrum

Yudai ICHIKAWA^{1*}, Junko YAMAGATA-SEKIHARA², Jung Keun AhN³, Yuya AKAZAWA⁴, Kanae AOKI⁴, Elena BOTTA^{5,6}, Hiroyuki EKAWA⁷, Petr EVTOUKHOVITCH⁸, Alessandro FELICIELLO⁵, Manami FUJITA¹, Toshiyuki GOGAMI⁹, Shoichi HASEGAWA¹, Tomoyuki HASEGAWA¹⁰, Shuhei HAYAKAWA^{11,1}, Tomonori HAYAKAWA¹¹, Satoru HIRENZAKI¹², Ryotaro HONDA¹³, Kenji HOSOMI¹, Ken'ichi IMAI¹, Wooseung JUNG³, Shunsuke KANATSUKI⁹, Shin Hyung KIM³, Shinji KINBARA^{14,1}, Kazuya KOBAYASHI¹¹, Jaeyong LEE¹⁵, Simonetta MARCELLO^{5,6}, Koji MIWA¹³, Taejin MOON¹⁵, Tomofumi NAGAE⁹, Yoshiyuki NAKADA¹¹, Manami NAKAGAWA⁷, Takuya NANAMURA⁹, Megumi NARUKI^{9,1}, Atsushi SAKAGUCHI¹¹, Hiroyuki SAKO¹, Susumu SATO¹, Yuki SASAKI¹³, Kotaro SHIROTORI¹⁶, Hitoshi SUGIMURA⁴, Toshiyuki TAKAHASHI⁴, Hirokazu TAMURA^{13,1}, Kiyoshi TANIDA¹, Zviadi TSAMALAIDZE⁸, Mifuyu UKAI⁴, and Takeshi O. YAMAMOTO¹

¹ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ²Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan ³Department of Physics, Korea University, Seoul 02841, Republic of Korea ⁴High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁵INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy ⁶Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy ⁷RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan ⁸ Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia ⁹Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁰Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan ¹¹Department of Physics, Osaka University, Osaka 560-0043, Japan ¹²Department of Physics, Nara Women's University, Nara 630-8506, Japan ¹³Department of Physics, Tohoku University, Sendai 980-8578, Japan ¹⁴Physics Department, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ¹⁵Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea ¹⁶Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan **E-mail: yudai@post.j-parc.jp*

E05

¹²C(K⁻, p) @ 1.8 GeV/c

C : 9.364 g/cm²

Inclusive Trigger

p: 2.2 GeV/c θp<5 deg.

	E05	
P _K - (GeV/c)	1.8	
Reaction	¹² C(K⁻,p)	12 C
σ _M (MeV)	4.2	

THEORETICAL ANALYSIS: GREEN'S FUNCTION METHOD

$$U(r, E) = (V_0 + iW_0 f_{\text{phase}}(E)) \frac{\rho(r)}{\rho(0)}$$

How about enhancing the 2N/1N?

SIMULATION

1N:2N=0:100

50:50

80:20

100:0

SIMULATION

Magnified

COMPARISON WITH DATA

Not reproduced well even with 2N only.

AN EVENT EXCESS

The template with $(V_0, W_0) = (-80, -40) +$ Breit-Wigner.

∧*p→∧p

(a) 80

60 [eV] -W₀ [M 50

40

30

B_K=90 MeV, Γ=100 MeV

KAONIC NUCLEAR STATE

- > With $(V_0, W_0) = (-80, -40)$ MeV a bound state really exist !!
 - > Hard to see as a peak with W₀=-40 MeV
 - > We can see only as a tail

Suppress the K escaping part.

A-dep. of binding energy Decay modes

15 B01 / T. Nagae

E-CLUSTER

J-PARC E05 by S. Kanatsuki

S=-2 EMULSION EVENTS

Nagara : ^{^6}He H. Takahashi et al., PRL 87, 212502 (2001)

KEK E373

Kiso : Ξ^{15} C K. Nakazawa et al., PTEP33, D02 (2015)

NEW EVENTS IN E07

H. Ekawa et al., PTEP 2019, 021D02. Mino Event AABe

∃¹⁵**C**

J-PARCE70 SDC pins AC Stage-2 approved for ¹²C target run Active fiber target (CH) ΔE<2 MeV, > 100 peak counts

in 2022

> With CD₂ target, we could take

 $d(K^{-},K^{+})(\Xi^{-}n)$ data to search for $(\Xi^{-}n)$.

S-2S magnets: QQD

Quadrupoles	Q1	Q2	
Field Gradient (T/m)	8.72	5.0	
Weight (ton)	37	12	
Aperture (cm)	31	36	
Current (A)	2500	2500	
Power (kW)	400	156	

Dipole	D1
Field Strength(T)	1.5
Weight (ton)	86
Pole Gap (cm ²)	32×80
Current (A)	2500
Power (kW)	450

En BOUND STATE IN ESCO8 MODEL

D* : a deuteron like state

È⁻n (³S₁, l=1)

B_Ξ=1.56 MeV ; U_Ξ=-7.0 MeV, Γ_Ξ=4.5 MeV

Strong Tensor Force

M.M. Nagels et al.,

B01 / T. Nagae 20

E05 ANALYSIS

¹²C(K⁻,K⁺) at 1.8 GeV/c

- 26-Oct-2015 ~ 19-Nov-2015
- K^{-} intensity : $6x10^{5} K^{-}$ / spill
- (5.52 seconds cycle) @ 39 kW
- 9.36 g/cm^{2 nat}C; 10 days
- 9.54 g/cm² CH₂; 2 days

E05 Setup

- $\Delta \Omega = 110 \text{ msr}, \Delta p/p_{SKS} = 3 \times 10^{-3}.$
- $\Delta E = 5.4 \text{ MeV}(FWHM) \text{ for } K^-p \rightarrow K^+ \Xi^-.$
- Best performance for the (K⁻,K⁺) reaction

E05 : (K-, K+) ANAYSIS

CH₂(K⁻,K⁺)Ξ⁻

E05 : (K-, K+) ANAYSIS

- Comparison with BNL E885 data with cross > section basis.
- > Please note that the BNL $\Delta E=14$ MeV, so that an enhancement at 27 MeV was smeared out.

E. Hiyama et al., PRL 124 (2020)9, 092501.

	ESC08c	HAL QCD
³³ S ₁	Attraction	Weakly Attractive
13 S 1	Weakly Attractive	Weakly Attractive
11 S 0	Repulsive	Attraction
31 S 0	Repulsive	Weakly Repulsive

E_{cm} (MeV)

E_{cm} (MeV)

SUMMARY

- Kaonic Nuclei vs Λ*(1405)-nuclei Shallow Deep
 - > Both states are Broad Γ~100 MeV.

- > Future directions :
 - → B_K or B_{Λ^*} A-dependence
 - → $Br(\pi\Sigma N)/Br(\Lambda p, \Sigma p)$?
- E-hyper nucleus vs H-nucleus
 - Lightest Ξ-hypernucleus