Shear viscosity and Kovtun-Son-Starinets conjecture in the BCS-BEC crossover regime of an ultracold Fermi

<u>Yoji Ohashi</u> and Daichi Kagamihara

Department of Physics, Keio University, Japan

• Introduction: shear viscosity and KSS conjecture

- Strong-coupling theory
 - SCTMA Self-energy
 - Shear viscosity
 - entropy density
- Results
- Summary

Shear viscosity: A possible route to examine the hierarchy problem

Shear viscosity: A possible route to examine the hierarchy problem

Shear viscosity: A possible route to examine the hierarchy problem

The shear viscosity η is a useful quantity to see the boundary between the two hierarchy levels.

Another importance of η: Kovtun-Son-Starinets (KSS) conjecture

C. Cao, et al., Science 331 58 (2011)

 $(\eta/s)_{\rm min} \sim 2.7\hbar/4\pi k_B$

• Quark Gluon Plasma

$$(\eta/s)_{\rm min} \sim 2\hbar/4\pi k_{\rm B}$$

- Superfluid ⁴He $(\eta/s)_{
 m min}\sim 5\hbar/4\pi k_{
 m B}$
- N_2 (room temp., 1atm)

 $(\eta/s) \sim 3.3 \times 10^3 \hbar/4\pi k_B$

KSS conjecture has been discussed in various hierarchy levels, ranging from highenergy physics to low-energy physics. So, this topic may be useful for this 新学術.

Today's talk

We theoretically investigate the shear viscosity in the normal state of an ultracold Fermi atomic gas. Including effects of a tunable pairing interaction within the framework of SCTMA, we clarity how this transport coefficient in the BCS-BEC crossover region. We also assess the KSS conjecture.

Formulation: self-consistent T-matrix approximation (SCTMA)

Shear viscosity η

perturbation < $u_x(y,t) = e^{i\omega t}u_x(y)$ $H' = \frac{1}{i\omega} \frac{\partial u_x}{\partial u} \int d^3 \boldsymbol{r} \Pi_{xy}$ yStress-tensor operator $\hat{\Pi}_{xy} = \sum \frac{p_x p_y}{m} c^{\dagger}_{\boldsymbol{p},\sigma} c_{\boldsymbol{p},\sigma}$ x $-\eta \frac{\partial u_x}{\partial u}$ $\Pi_{xy} =$ shear viscosity $\eta = -\lim_{\omega \to 0} \frac{\mathrm{Im}\Xi(\omega)}{\cdots}$ $\Xi(\omega) = -i \int d\mathbf{r} dt e^{i\omega t} \theta(t) \left\langle [\hat{\Pi}^{xy}(\mathbf{r}, t), \hat{\Pi}^{xy}(\mathbf{0}, 0)] \right\rangle$

We consistently evaluate the shear viscosity within SCTMA.

Shear viscosity η , being consistent with SCTMA

Entropy density s, being consistent with SCTMA

Shear viscosity in the BCS-BEC crossover region

Kagamihara, Inotani, Ohashi, JPSJ 88 (2019), 114001

Shear viscosity in the WEAK-coupling side (k_Fa_s)⁻¹<0

1 Classical Boltzmann gas

 $\eta \sim T^{1/2 \sim 3/2}$

2 Quantum Fermi liquid

$$\eta \sim n \langle p \rangle l_{\rm mfp} \sim n p_F \frac{1}{T^2}$$

Pauli blocking effect

3 Pseudogap regime (pairing fluctuations)

Shear viscosity in the STRONG-coupling side (k_Fa_s)⁻¹>0

(4) Molecular lifetime effect

$$\eta \sim n^{\mathrm{B}} p_{\mathrm{av}}^{\mathrm{B}} l_{\mathrm{mfp}}^{\mathrm{B}} \qquad \tau_{\mathrm{B}} \propto e^{-E_{\mathrm{bind}}/2T} \longrightarrow \eta \propto e^{E_{\mathrm{bind}}/2T}$$

Assessment of KSS conjecture in cold Fermi gas physics

Kagamihara, Ohashi, JPSJ 89 (2020), 044005 (2020).

Assessment of KSS bound in cold Fermi gas physics

 η /s always take the same minimum value at $(k_{\rm F}a_s)^{-1}=0.4>0$.

$$\left(\frac{\eta}{s}\right)_{\rm l.b.} \simeq 4.5 \times \frac{\hbar}{4\pi k_{\rm B}}$$

Comparison with ⁶Li Fermi gas experiment

⁶Li: M. Bluhm et al. PRL **119** 065302 (2017)

Calculated η /s semi-quantitatively explains the recent experiment at the unitarity.

Summary

We have discussed the shear viscosity η in an ultracold Fermi gas. We showed that η is useful to see how the atom hierarchy changes to the molecule hierarchy. We also show that the KSS bound is obtained around the two hierarchy levels.

