Constraint on spin and parity of $\Xi_c(2970)$ at Belle

Y. Kato (KMI, Nagoya university)

<u>チャームバリオン内のダイクォーク構造の探求</u>

Physics of single charmed baryons

- Charm quark is heavy: (1500 MeV/c²) > u,d,s quarks (300-500 MeV/c²) • spin-spin interaction $\propto 1/m_1m_2$
- Di-quark correlation in light quarks? (more simple! New d.o.f!).

Every pair can not be distinguished.

Charmed baryon

Light di-quark and charm quark?

Observed charmed baryons

Excitation modes in the charmed baryons

There are two kind of excitation modes.

- λ mode: excitation between c quark and u-d di-quark.
- ρ mode: excitation in the di-quarks.

- λ mode excited states are already observed $\Lambda_c(2593) = 1/2^ \Lambda_c(2625) = 3/2^ \Xi_c(2790) = 1/2^-$, $\Xi_c(2815) = 3/2^-$
- There should be other state with negative parity corresponding to ρ mode

Ξ_c(2970)⁺

First observation by Belle in Λ_c^+ K- π^+ (in 2006)

Today's talk:

- Experimental determination of JP for $\Xi_c(2970)$
- Collaborative work with T. Moon (SNU) and K. Tanida (JAEA)

KEKB/Belle

- Asymmetric energy e⁺e⁻ collider to test KM theory in B-meson decays.
- $1ab^{-1}$ data sample ~= 1×10^9 cc^{bar} events. O(10⁶) $\Lambda_c^+ \rightarrow pK^-\pi^+$ reconstructed.
- Belle: General purpose detector.
- Hadron spectroscopy also possible.

Spin measurement

- Use the decay chain $\Xi_c(2645) \pi$, $\Xi_c(2645) \rightarrow \Xi_c^+ \pi^-$
- Measure two angular distributions

 $\Theta_{\rm h}$:Helicity angle of the $\Xi_{\rm c}(2970)^+$

 Θ_c : Helicity angle of $\Xi_c(2645)_0$

$cos(\Theta_h)$ distribution

Spin hypothesis	1/2	3/2	5/2
$\chi^2/{\rm n.d.f.}$	9.3/9	7.7/7	7.5/6
Prob.	41%	36%	28%
Т	-	-0.5 ± 1.1	0.7 ± 1.6
$ ho_{11}$	0.5	0.13 ± 0.26	0.08 ± 0.27
ρ ₃₃	-	0.37 ± 0.26	0.12 ± 0.09
$ ho_{55}$	-	-	0.30 ± 0.28

$W_{1/2} = \text{constant}$	(1)
$W_{3/2} = \rho_{33} \left\{ 1 + T \left(\frac{3}{2} \cos^2 \theta_h - \frac{1}{2} \right) \right\}$	
$+\rho_{11}\left\{1+T\left(-\frac{3}{2}\cos^2\theta_h+\frac{1}{2}\right)\right\}$	(2)
$W_{5/2} = \frac{3}{32} [\rho_{55} 5\{(-\cos^4 \theta_h - 2\cos^2 \theta_h + 3)$	
$+T(-5\cos^4\theta_h+6\cos^2\theta_h-1)\}$	
$+\rho_{33}\{(15\cos^4\theta_h - 10\cos^2\theta_h + 11)$	
$+T(75\cos^4\theta_h - 66\cos^2\theta_h + 7))\}$	
$+\rho_{11}2\{(-5\cos^4\theta_h + 10\cos^2\theta_h + 3)$	
$+T(-25\cos^4\theta_h + 18\cos^2\theta_h - 1)\}].$	(3)
UTT (3 0) 12 UTT (1 0) 12	

 \mathbf{a}

- $T = \frac{|T(p,\frac{1}{2},0)|^2 |T(p,\frac{1}{2},0)|^2}{|T(p,\frac{3}{2},0)|^2 + |T(p,\frac{1}{2},0)|^2}$ • Fit quality is almost independent of spin assumption.
- Note flat distribution can be made in any spin hypothesis
 (all the ρ_{ii} to be the same = no polarization)
- Conlusion from O_h analysis:
 Spin=1/2 or other spin with small polarization

$\cos(\Theta_{c})$ distribution

• The helicity of $\Xi_c(2645)$ is delegated from $\Xi_c(2970)$. Dominance of helicity 1/2 can be naturally explained with $\Xi_c(2970)$ spin to be 1/2.

- Fit assuming lowest partial wave dominates with other JP is also tried. 3/2⁻ and 5/2⁺ are excluded by 5.1 (4.0)σ (others have upward).
- Spin = 1/2 is strongly favored.
- Exclude $\Xi_c(2645)$ spin to be 1/2

J^P	Partial Wave	$W(heta_c)$
$1/2^{+}$	P	$1 + 3\cos^2\theta_c$
$1/2^{-}$	D	$1 + 3\cos^2\theta_c$
$3/2^{+}$	P	$1 + 6\sin^2\theta_c$
$3/2^{-}$	S	1
$5/2^{+}$	P	$1 + (1/3)\cos^2\theta_c$
$5/2^{-}$	D	$1 + (15/4) \operatorname{sm}^{9} \theta_c$

Parity determination

Measure the ratio of branching fractions $R = \frac{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+)}{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c'^0 \pi^+)}$

The value *R* can be calculated by assuming the heavy quark spin symmetry.

Parity	+	+	_	_
Brown-muck spin s_ℓ	0	1	0	1
R	1.06	0.26	0	≪1

Difficulty: Charges of ground state Ξ_c are different in two decay modes. $\Xi_c(2645)^0 \pi$, $\Xi_c(2645) \rightarrow \Xi_c^+ \pi$ -

$$\begin{aligned} \Xi_{c}^{''0}\pi^{+}, \ \Xi_{c}^{''0} &\to \Xi_{c}^{'0} \ \gamma \\ R &= \frac{N^{*}}{\mathcal{E}^{*} \times \mathcal{B}^{+}} \Big/ \frac{N'}{\sum_{i} \mathcal{E}_{i}' \times \mathcal{B}_{i}^{0}} \end{aligned}$$

N*, N': Yield of $\Xi_c(2970)$ in each decay mode ϵ^* , ϵ' : Efficiency of $\Xi_c(2970)$ $B^{+/0}$: Branching fractions of ground state Ξ_c for decay modes we used to reconstruct them

- The branching fractions $(B^{+/0})$ can not be canceled.
- The uncertainty of R is dominated by those for branching fractions (more than 80%...)

R measurement assuming isospin symmetry

The branching fractions of ground state Ξ_c can be obtained in the following equation:

• By assuming $\sigma_{\pm c}$ are the same between Ξ_c^{0} and Ξ_c^{+} based on isospin symmetry, R can be written in the following equation.

~10% difference for $\Sigma_c(2455)$ ~7% difference for $\Sigma_c(2520)$

Phys. Rev. D 89, 091102(R)

Result

$R = 1.67 \pm 0.29 (\text{stat.})^{+0.15}_{-0.09} (\text{syst.}) \pm 0.25 \text{ (IS)}$ Preliminary

Parity	+	+	_	_
Brown-muck spin s_ℓ	0	1	0	1
R	1.06	0.26	0	≪1

 $J^{P}=1/2^{+}$ with Brown-much spin to be zero is favored

Summary

- $J^{P}=1/2^{+}$ is favored for $\Xi_{c}(2970)$
- First experimental constraint on J^{P} for Ξ_{c} family
- This is a family of Roper state: The excitation energy of ~530 MeV is consistent with other 1/2 ⁺ state.
- Paper draft for PRL is under review within Belle

Backup