第3回クラスター階層領域研究会 (15+5)

May 18 2020

Research on ultracold few-atomic molecules using ionization detection (C01班公募研究)

京都大学、JSTさきがけ(専任)

Jun Kobayashi

Background

Researches on Efimov state using ultracold atom

Our plan

• Direct observation of Efimov state using ionization

Experiment

- Atom trapping in 3D Cavity-enhanced optical lattice
- Laser cooling of atoms by Raman sideband cooling

Background

• Researches on Efimov state using ultracold atom

Our plan

• Direct observation of Efimov state using ionization

Experiment

- Atom trapping in 3D Cavity-enhanced optical lattice
- Laser cooling of atoms by Raman sideband cooling

Background : Hierarchical structure of matter

Efimov states

Study on Efimov state with ultracold atoms

Mixture of two species

Typical data of Efimov resonance

Background

Researches on Efimov state using ultracold atom

Our plan

• Direct observation of Efimov state using ionization

Experiment

- Atom trapping in 3D Cavity-enhanced optical lattice
- Laser cooling of atoms by Raman sideband cooling

Our plan: ionization detection of Efimov state

Direct observation of Efimov trimer using ionization detection

- Fast ionization pulse: 5ns << lifetime of trimer(~100us)
- High sensitivity : >50% (MCP)
- Mass spectroscopy by TOF

Atom, dimer, and trimer can be clearly distinguished.

Further study about decay process Production of polyatomic cluster Stable polyatomic molecule

Decay process of Efimov trimer

Efimov state

T~10mK?

gives their kinetic energies.

Difficult to trap

Possible to detect by ionization

Detection of the product molecule

Detailed study about the decay process will be realized.

Background

Researches on Efimov state using ultracold atom

Our plan

• Direct observation of Efimov state using ionization

Experiment

- Atom trapping in 3D Cavity-enhanced optical lattice
- Laser cooling of atoms by Raman sideband cooling

Our plan for Efimov experiment

Optical lattice enhanced by high-finesse cavity

High finesse optical cavity in vacuum chamber

Finesse : $^{7}x10^{4}$

Enhancement : $\sim 2x10^4$

Diameter~1mm, Depth U~300uK

Absorption imaging

Cavity-enhanced 3D optical lattice

Loading into 3D cavity-enhanced lattice

Number of atoms $: N=2.4 \times 10^7$ Temperature : ~50 uK Atomic density $: 2x10^{11}/cm^3$

Laser cooling & compression

Raman sideband cooling

Raman sideband cooling

Succeeded in laser cooling in optical lattice

Compression

Raman sideband cooling + Compression

Succeeded in cooling and compression in optical lattice

1D system

In low temperature,

$$T \ll \frac{\hbar\omega_{x,y}}{k_B} = T^* \sim 12 \ \mu K$$

Motions in x and y directions are frozen. Motion in z direction is allowed.

Specific properties to 1D system

No thermalization Fermionization of bosonic gas

Suppression of 3-body collisions

Small overlapping of wavefunctions

Newton's cradle [Nature 440 900 (2006)]

1D system

In 1D system, 3-body collision is strongly suppressed

Can be used as a trigger of Efimov state production

2D system

Temperature in X,Y directions $T_{X,Y}^{\sim}$ 550 nK

Critical temperature of BEC transition

Tc ~ a few 100 nK

Background

Researches on Efimov state using ultracold atom

Our plan

• Direct observation of Efimov state using ionization

Experiment

- Atom trapping in 3D Cavity-enhanced optical lattice
- Laser cooling of atoms by Raman sideband cooling

Summary and outlook

Summary Researches on Efimov states using ultracold atoms.

Experiment

✓ Atom trapping in 3D cavity-enhanced optical lattice

Number of atoms (arb. units)

0.8

0.4

0.2

0.0

-60 -40 -20 0 20 40

Velocity (mm/s)

- \checkmark Raman sideband cooling and compression
- ✓ 1D system

Improve cooling Detection of Efimov states by ionization

