Study of mesonic states with two-photon processes at Belle

Sadaharu Uehara (KEK)

第5回クラスター階層領域研究会(2020年9月24,25日)

Two-photon Physics at e⁺e⁻ collider

Hadronic system with Total charge = 0, C = +, **Real two-photon** collisions dominate: $J^{P}= 0^{+}, 0^{-}, 2^{+}, 2^{-}, 3^{+}, ...$ (even)[±], (odd \neq 1)⁺ With a virtual photon, $J^{P}=1^{+}$ is possible

The $\gamma\gamma$ cross section is derived using Equivalent Photon Approximation (luminosity function).

Single Resonance formation:

Γγγ: proportional to the production cross section
 → reflecting meson's internal structure
 Measurement of Decay properties, Search for new resonances, ...

Hadron-pair production, Multi-hadron production:

Test of QCD/Hadron structure

Use of highly virtual photon γ^* (Q² > 1 GeV)

 $Q^2 = -q_1^2$: virtuality of a photon

Physics target in this talk

Study of mesonic states

with Single or two meson-production processes

 $\gamma^{(*)}\gamma \rightarrow M (\rightarrow \text{decay})$

 $\gamma^{(*)}\gamma \rightarrow MM'$

We explore ...

- Light meson spectroscopy and exotics (tetraquarks, glueballs etc.)
- Charmonium spectroscopy and exotics (XYZ)
- Meson properties
- Transition form factors, (G)VDM etc.
- Verification of (p)QCD through qq-meson model

People contributing to these contents:

(Present Belle Two-photon members only, not covering the all):

Japan: Y. Watanabe, M. Masuda, Y. Teramoto, S. Uehara

Taiwan: H. Nakazawa, A.Chen

China: C.P. Shen, C.Z. Yuan

KEKB Accelerator and Belle Detector

- Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)
 √s= around 10.58 GeV ⇔ Υ(4S)
 Beam crossing angle: 22mrad
- World-highest Luminosity $L_{max}=2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- \int Ldt ~ 1040 fb⁻¹ (1999-2010)

Two-photon result publications from Belle

process	W (GeV)	L (fb-1)	papers published by Belle	year	7			
π ^ο π ^ο	0.6-4.0	95	PRD 78, 052004	2008				
	0.6-4.0	223	PRD 79, 052009	2009				
π*π -	0.8-1.5	86	PRD 75, 051101	2007		Fruitful achievements		
	0.8-1.5	86	JSPJ 76, 074102	2007		by more than 15 processes		
	2.4-4.1	88	PLB 615,39	2005				
KtK -	1.4-2.4	67	EPJC 32, 323	2004	Pseudoscalars			
ĸĸ	2.4-4.1	88	PLB 615,39	2005	in No-tag	-Observation of $\chi_{C2}(2P)$,		
10 10	2.4-4.0	398	PLB 651, 15	2007	[X(4350), X(3915),		
K SK S	1.05-4.0	972	PTEP 2013, 123C01	2013		enhancements in VV		
ηη	1.1-3.8	393	PRD 82, 114031	2010				
ηπ ⁰	0.84-4.0	223	PRD 80, 032001	2009				
4π/4Κ/2Κ2π	2.4-4.1	395	EPJC 53, 1	2008		-Confirmation of $f_0(980)$,		
η'π [*] π΄	1.4-3.4	673	PRD 86, 052002	2012		$a_{0}(980), f_{0}(1710)$		
η'π ⁺ π ⁻ ,η _c (1S),η _c (2S)	1.4-3.8	941	PRD 98, 072001	2018				
D Dbar	3.7-4.3	395	PRL 96, 082003	2006				
γJ/ψ	3.2-3.8	33	PLB 540,33	2002		-Extraction of Transition		
φJ/ψ	4.2-5.0	825	PRL 104, 112004	2010	Vectors	Form Factors of π^0 , $f_0(980)$,		
ωJ/ψ	3.9-4.2	694	PRL 104, 092001	2010	in No-tag	f.(1270) f.'(1525)		
ωω/φφ/ωφ	1.5-4.0	870	PRL 108, 232001	2012	J	$1_2(1270), 1_2(1020)$		
ppbar	2.03-4.0	89	PLB 621,41	2005	Baryons			
ppbarK*K*	3.2-5.6	980	PRD 93, 112017	2016	J in No-tag			
π ^o	0.6-4.0	759	PRD 86, 092007	2012	٦			
π⁰π⁰	0.5-2.1	759	PRD 93, 032003	2016	Peusoscalars			
K [°] sK [°] s	1.0-2.6	759	PRD 97, 052003	2018	in Single-tag			

Summarized by M.Masuda

The six 0⁻-meson-pair processes; in total ~20 peaks

W<~2.5GeV: Dominated by resonance formation

Confirmation of $f_0(980)$ and $a_0(980)$ formations

$f_0(1710)$ formation in $K^0_S K^0_S$ and others

EPJ C (2014) 74:3026

Mode	Resonance	Mass (MeV/ c^2)	Width (MeV)	$\Gamma_{\gamma\gamma}$ (eV), $(J,\lambda) = \begin{cases} (2,2)\\ (0,0) \end{cases}$			
$\pi^+\pi^-$	$f_0(980)$	$985.6^{+1.2+1.1}_{-1.5-1.6}$	$34.2^{+13.9+8.8}_{-11.8-2.5}$	$205^{+95+147}_{-83-117}$			
	$\eta'(958)$	$\mathcal{B}(\pi^{+}\pi^{-})\!<\!2.9\!\times\!10^{-3}$ (with interference), $3.3\!\times\!10^{-4}$ (with					
	$f_{2}'(1525)$	$1518\pm1\pm3$	$82\pm2\pm3$	$28.2 \pm 2.4 \pm 5.8 / \mathcal{B}$			
K^+K^-	$f_J/f_0/a_2$	$1737 \pm 5 \pm 7$	$151\pm22\pm24$	$\begin{cases} 10.3 \pm 2.1 \pm 2.3/\mathcal{B} \\ 76 \pm 15 \pm 17/\mathcal{B} \end{cases}$			
	$f_2(2010)$	$1980\pm2\pm14$	$297{\pm}12{\pm}6$	$61\pm 2\pm 3/\mathcal{B}$			
	f_J/f_2	$2327\pm9\pm6$	$275 \pm 36 \pm 20$	$\begin{cases} 22 \pm 3 \pm 6/\mathcal{B} \\ 161 \pm 22 \pm 48/\mathcal{B} \end{cases}$			
	$f_{2}'(1525)$	$1525.3^{+1.2+3.7}_{-1.4-2.1}$	$82.9^{+2.1+3.1}_{-2.2-2.0}$	$48^{+67+108}_{-8-12}/\mathcal{B}(K\overline{K})$			
$K^0_S K^0_S$	$f_0(1710)$	1750^{+6+29}_{-7-18}	$139\substack{+11+96\\-12-50}$	$12^{+3+227}_{-2-8}/\mathcal{B}(K\overline{K})$			
	$f_2(2200)$	2243_{-6-29}^{+7+3}	$145{\pm}12^{+27}_{-34}$	$3.2^{+0.5+1.3}_{-0.4-2.2}/\mathcal{B}(KK)$			
	$f_0(2500)$	$2539{\pm}14^{+38}_{-14}$	$274_{-61-163}^{+77+126}$	$40^{+9+17}_{-7-40}/\mathcal{B}(K\overline{K})$			
	$f_0(980)$	$982.2{\pm}1.0^{+8.1}_{-8.0}$		$286 {\pm} 17^{+211}_{-70}$			
$\pi^0\pi^0$	$f_2(1270)$	fixed	fixed				
		${\cal B}(f_2 o \gamma \gamma) = (1$	$\mathcal{B}(f_2 \to \gamma \gamma) = (1.57 \pm 0.01^{+1.39}_{-0.14}) \times 10^{-5}$				
	$f_0(Y)$	1470^{+6+72}_{-7-255}	90^{+2+50}_{-1-22}	$11^{+4+603}_{-2-7}/\mathcal{B}$			
	$f_2(1950)$	2038^{+13}_{-11}	441^{+27}_{-25}	$54^{+23}_{-14}/\mathcal{B}$			
	$f_4(2050)$	$1884^{+14+218}_{-13-25}$	$453{\pm}20^{+31}_{-129}$	$136^{+24+415}_{-22-91}$			
$\eta \pi^0$	$a_0(980)$	$982.3_{-0.7-4.7}^{+0.6+3.1}$	$75.6{\pm}1.6^{+17.4}_{-10.0}$	$128^{+3+502}_{-2-43}/\mathcal{B}$			
	$a_0(Y)$	$1316.8\substack{+0.7+24.7\\-1.0-4.6}$	$65.0^{+2.1+99.1}_{-5.4-32.6}$	$432{\pm}6^{+1073}_{-256}/\mathcal{B}$			
	$a_2(1320)$	fixed	fixed	$145^{+97}_{-34}/\mathcal{B}$			
ηη	$f_0(Y)$	$1262^{+51+82}_{-78-103}$	$484_{-170-263}^{+246+246}$	$121^{+133+169}_{-53-106}/\mathcal{B}$			
	$f_2(1270)$	fixed	fixed	$11.5^{+1.8+4.5}_{-2.0-3.7}/\mathcal{B}$			
	$f_2(X)$	$1737 {\pm} 9^{+198}_{-65}$	$228^{+21+234}_{-20-153}$	$5.2^{+0.9+37.3}_{-0.8-4.5}/\mathcal{B}$			

Meson-pair production and QCD

High energy

Perturbative QCD approach

for exclusive meson production with hard scattering, distribution amp., form factor

S.J.Brodsky, G.P.Lepage, PRD 24, 1808 (1981) M.Benayoun, V.L.Chernyak, NPB329,209(1990)

Predict

MAN

Kroll, Diehl and Vogt Handbag model with soft hadron exchange

M.Diehl, P.Kroll, and C. Vogt, PLB 532, 99 (2002) M.Diehl, P.Kroll, PLB 683, 165 (2010)

W-dependences at high energies

Cross sections and their ratios

Process	п	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$\pi^{0}\pi^{0}$	$8.0\pm0.5\pm0.4$	3.1 - 4.1 [†]	< 0.8		10	
KsKs	$11.0 \pm 0.4 \pm 0.4$	2.4 - 4.0 [†]	< 0.8		10	
$\eta \pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8		10	
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 – 3.3	< 0.8		10	
Process	σ_0 ratio	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K^{+}K^{-}/\pi^{+}\pi^{-}$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
$K_S K_S / K^+ K^-$	\sim 0.10 to \sim 0.03	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta \pi^0 / \pi^0 \pi^0$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$0.36R_f^2(0.62R_f^2)^*$		

† Exclude χ_{cJ} region, 3.3 - 3.6 GeV.

‡ Assuming η is a member of SU(3) octet (superposition of octet and singlet with mixing angle of $\theta_p = -18^\circ$). *R*_f is a ratio of decay constants, $f_{\eta}^2/f_{\pi^0}^2$.

• *n* ranges 7 to 11. Close or not far from QCD prediction of 6 and 10.

() () ()

γ*γ Cross Section and Transition Form Factor

γ*γ cross section: σ(W, Q²) : measured with a virtual photon in the Single-tag Mode

W : $\gamma * \gamma$ c.m. energy, $Q^2 = -q_1^2$: virtuality of the virtual photon $\sigma(W,Q^2) = \sigma_{TT} + \varepsilon \sigma_{LT}$ (Transverse photon and Longitudinal photon)

 $\leftrightarrow \text{Two real-photon collisions case}: the No-tag mode, where the contribution is only near Q² = 0, and <math>\sigma(W) = \sigma_{TT}$ only.

Transition form factor (TFF) of a resonance: F(Q²)

Proportional to the helicity amplitude of the resonance production

$$\Sigma_{\lambda} | F(Q^2)_{\lambda} |^2 \propto \sigma (\gamma * \gamma \rightarrow \text{Resonance})$$

Produce Resonance with helicity λ ; defined along the $\gamma *$ direction

$\gamma * \gamma \to \pi^0 \pi^0 : f_0$ (980) and f_2 (1270) TFFs

Physics motivations:

- Q² dependence of TFF for scalar and tensor mesons (This is the first measurement)

- Test of QCD of qq meson model
- Hadronic Light-by-Light contribution to g-2 $|_{\mu}$ for validation check of theoretical calculations

Q² dependence of the TFFs

...... Pascalutes, Pauk, Vanderhaeghen, saturated sum rule, PRD 85, 116001 (2012), η 's

000

___ ibid., axial-vector mesons

Charmonium(-like) states

 χ_{c2} (3930) is discovered by Belle and confirmed by BaBar, so far seen in the \overline{DD} decay mode only. 25 (c) combined (c) Entries / 20 MeV/c² BaBar Belle 50 E 20 40 E Events/10 MeV/c² $D\overline{D}$ 30 E Recently confirmed also at LHCb 20 LHCb: JHEP 07 (2019) 035 4000 3.8 4.2 $D^0 \overline{D}^0$ $D^+ D^-$ LHCb MeV/c^2) $m(D\overline{D})$ [GeV/c²] 3500E 3000 Belle: PRL 96, 082003 (2006) 2500E BaBar: PRD 81, 092003 (2010) M(DD) (GeV/c²) 2000E 1500 1000E Consistent with the radial-excited 500E 2P charmonium state. 3.7 3.8 3.9 4.1 4.2 $\left[\text{GeV}/c^2 \right]$ $m_{D\bar{D}}$

 $\overline{\mathbb{W}}$

χ_{c0} and χ_{c2} production with high-Q² photons

0000

 $^{1}(Q^{2}+M(c\bar{c})^{2})$

X(3872) search in single-tag with J/ $\psi \pi^+\pi^-$ final state

 $\gamma * \gamma \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$

J^{PC} of X(3872) is 1⁺⁺. Production Allowed in single tag mode. DD* molecule candidate

() () ()

Summary

Highlights of Two-photon physics results from Belle for meson/exotic spectroscopy and structure studies

- Comprehensive light-meson spectroscopy:

observation of scalar states

- Systematic QCD test with many meson-pair production processes
- First measurement of scalar & tensor-meson TFFs
- Discovery/observations of new charmonium(like) states
- Charmonium and X(3872) production through high-Q² photons

18

Backup

No-tag and Single-tag measurements

Experimental features

No-tag (No electron observed) $\gamma\gamma \rightarrow$ hadron(s) (quasi-real two-photon collisions) Relatively large cross section A p_t-balanced hadron system observed C-odd ($\gamma * \rightarrow$ hadron(s)) contamination is very small, in general. Single-tag (only one electron observed) $\gamma * \gamma \rightarrow$ hadron(s) (virtual-photon & quasi-real-photon collisions) Relatively small cross section p_t-balance between a tag-electron and the hadron system C-odd ($\gamma * \rightarrow$ hadron(s)) contamination sometimes problem. $\gamma \ast \gamma q_1$

S.Uehara, 第5回クラスター階層 Sept.2020 20

 p_{2}

е

$\gamma\gamma \rightarrow$ Vector-meson pair

The large cross-section size for $\omega \varphi$ cannot be well explained by a theory.

Slope parameters for high W:

n=7.2 \pm 0.6 ($\omega \phi$) 8.4 \pm 1.1 ($\phi \phi$) 9.1 \pm 0.6 ($\omega \omega$) Similar values with $\pi^0 \pi^0$.

Single-tag, TFF for π^0 at high Q^2

 $\gamma * \gamma \rightarrow \pi^0$ **The BaBar and Belle results** are close to or above the QCD asymptotic limit at high Q².

BaBar, PRD 80, 052002 (2009)

Belle, PRD 86, 092007 (2012)

More precise and more data points at higher Q² are desired.

Errors for π^0 -TFF measurement in the high Q^2 region at Belle II are estimated, for

- Integrated luminosity 50 ab⁻¹

(x 66 of the Belle analysis)

- reduced systematic errors from π^0 -mass fit and trigger efficiency

Q² > 60 GeV²

Huge background will come from Bhabha

Formalism of PWA

$$|F(Q^2)| = \sqrt{\frac{\sigma_R^{\lambda}(Q^2)}{\sigma_R^{\lambda}(0)(1 + \frac{Q^2}{M^2})}}$$

$$\frac{d\sigma(\gamma^*\gamma \to \pi^0\pi^0)}{d\Omega} = \sum_{n=0}^2 t_n \cos(n\varphi^*),$$

$$t_0 = |M_{++}|^2 + |M_{+-}|^2 + 2\epsilon_0 |M_{0+}|^2,$$

$$t_1 = 2\epsilon_1 \Re \left((M_{+-}^* - M_{++}^*)M_{0+} \right),$$

$$t_2 = -2\epsilon_0 \Re (M_{+-}^* M_{++}),$$

++, +-, 0+ --- Helicity state of the incident photons S, D_0 etc. -- Partial-wave amplitude in $\pi^0\pi^0$ scattering B, A_f -- Background and *f*-resonance components.

 ϵ_0, ϵ_1 --- A spin-dependent flux factor ratio for the virtual-photons

TFF is defined for each resonance R produced with each helicity λ

To obtain the resonance amplitudes: Perform PWA, parameterizing W dependence of the resonance and continuum components, e.g.,

$$\begin{split} M_{++} &= S + D_0, \\ S &= B_S(W) + A_{f0}(W) \\ D_0 &= 4\pi \left[B_{D0}(W) + A_{f2}(W) \sqrt{r_{20}} \right] Y_2^0 \\ \text{etc.} \end{split}$$

We determine each component as well as the relative phase by a fit.

 $\gamma * \gamma \rightarrow \pi^0 \pi^0$: Cross-section results and fit

The curves are PWA fit constructed by parameterized resonant ($f_0(980)$) and $f_2(1270)$) and continuum amplitudes.

Significant contributions from hel.=0 and 1, in contrast to the no-tag (Q²=0) case

0000

W dependence for different Q^2 bins

How about in the K⁰_SK⁰_S process?

Show indications of:

- Non-zero D_0 and D_1 components in the f_2 ' (1525).
- $f_2(1270)/a_2(1320)$ not visible
- An enhancement near the threshold (0.995 GeV).

() () ()

 $\gamma * \gamma \rightarrow K^0_S K^0_S : f'_2(1525) TFF$

Shaded areas; overall systematic

- Schuler, Berends, van Glick (SBG) Nucl. Phys. B 523, 423, (1998).

The Q² dependence of each helicity fraction is assumed as:

$$r_{0fp}: r_{1fp}: r_{2fp} = k_0 Q^2: k_1 \sqrt{Q^2}: 1$$

Fractions k₀ and k₁ are floated. helicity-0 and -2 -- agree well with SBG. helicity-1 -- slightly smaller, but not inconsistent.

Search for the other or new states

 $\chi_{c0}(2P)$, expected also to have a large coupling to DD. Double-charmonium production: $\chi_{c0}(2P)$ is at 3.8-3.9GeV and somewhat broad?

High W, the luminosity frontier, 3-4 GeV region

Baryon-pair production processes are statistically limited due to a large n for $\sigma \propto W^{\text{-n}}$

 $\gamma\gamma \rightarrow p\overline{p}$ Belle, PLB 621, 41 (2005) \square Belle $\gamma \gamma \rightarrow pp$ 10 $\Box \ L3 \gamma \gamma \rightarrow \Lambda \Lambda$ n =12.4 $\pm \frac{2.4}{2.3}$ @ 3.2 - 4.0 GeV $\circ L3 \gamma \gamma \rightarrow \Sigma^0 \bar{\Sigma}^0$ Might agree with a QCD prediction n = 10(qu) $\triangle \quad \text{CLEO } \gamma \gamma \to \Lambda \bar{\Lambda}$ 1 $\sigma(\gamma\gamma \to Baryon Anti-Baryon)$ Hyperon (Λ , Σ) pairs, Δ pairs etc. also should be interesting at Belle II $\sigma(\Lambda\overline{\Lambda})$: $\sigma(\Sigma^{0}\overline{\Sigma}^{0})$: $\sigma(p\overline{p}) \approx 1 : 1 : 1$ at high W !? Complete diquark pp ----- diquark AA uds and uud - diquark $\Sigma^0 \overline{\Sigma}^0$ cos to solve possible diquark combinations. 3.8 Wyy (GeV)

S.Uehara, 第5回クラスター階層 Sept.2020

29

Double-tag processes

Angular dependence

 $\gamma\gamma o \pi^0\pi^0$

 $d\sigma/d|\cos\theta^*| \propto \sin^{-4}\theta^*$ is predicted by $q\overline{q}$ -meson model and perturbative QCD

- Fit to $\sin^{-4}\theta^* + b\cos\theta^*$
- b becomes constant above 3.2 GeV.

mode	$\alpha \sin \sin^{-\alpha} \theta^*$	GeV	$ \cos \theta^* $	
K _S K _S	3 – 8	2.6 - 3.3	< 0.8	
$\pi^+\pi^-$	Good agreement with 4	3.0 - 4.1	< 0.6	
K^+K^-	Good agreement with 4	3.0 - 4.1	< 0.6	
$\pi^0\pi^0$	Better agreement with $\sin^{-4} \theta^* + b \cos \theta^*$ Approaches $\sin^{-4} \theta^*$ above 3.1 GeV	2.4 - 4.1 [†]	< 0.8	
$\eta \pi^0$	Good agreement with 4 above 2.7 GeV	3.1 - 4.1	< 0.8	
ηη	Poor agreement with 4 Close to 6 above 3 GeV	2.4 - 3.3	< 0.9	Summarized by H.Nakazawa Hadron2013
	Exclude $\dagger \chi_{cJ}$ region, 3.3 - 3.6 G	ラスター階層 Sept.2020		

Two-photon decay width of $f_0(980)$ and $a_0(980)$

0000

S.Uehara, 第5回クラスター階層 Sept.2020

32

Scalars in the 1.2 – 1.8 GeV region

- Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$. •
- Some of previous two-photon measurements show a hint of $f_0(1100-1400) \rightarrow \pi\pi$. •
- Belle's $\pi^0 \pi^0$ measurement reports $f_0(1470)$. • May be visible in the line shape.
 - \rightarrow favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.

160

PDG2019 puts the opposite favor.

 $\pi\pi$

 $\gamma\gamma$

 $\pi\pi$

... $\gamma\gamma$

1.6 – 1.8 GeV: Mass region of the greatest difficulty

- $a_2(1700) \rightarrow \rho^0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ is confirmed by previous two-photon measurements.
- $a_2(1700) \rightarrow \eta \pi^0$ seen in our data, but no definite parameters obtained.
- $f_2(1810) \rightarrow \eta \eta$ is confirmed in two-photon process.
- An unidentified structure around ~1.6 GeV is seen in $\pi^0\pi^0$. But, its correspondence to a single resonance of the mass is not sure.

1.4 ₩ (GeV) $f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

Search for exotic baryons (Pentaquarks)

PRD 93, 112017(2016)

Simultaneous fit: $\Lambda(1520)^0$ and $\Theta(1540)^0$ signal are included. The shaded histogram: $\sum Pt^*$ sideband $288 \pm 48 \ \Lambda(1520)^0$ events, 8.6σ $22 \pm 34 \ \Theta(1540)^0$ events, 1.4σ

Similar simultaneous fit: $\Theta(1540)^{++}$ signal Solid line: the simultaneous fit The dotted curve: background estimate The shaded histogram: $\sum Pt^{*}$ sideband -16 \pm 34 $\Theta(1540)^{++}$ events