Candidates for the 5 α condensed state in ²⁰Ne

足立智 (大阪大学) / Satoshi Adachi (Osaka University) 第5回クラスター階層領域研究会 Sep. 24th, 2020

Contents

- Introduction
- Experiment
- Measured excitation-energy spectra
- Comparison with the statistical model & Discussion
- Summary & Prospect

Introduction

Neutron

Proton

Alpha-particle condensed states in A = 4k nuclei Expected energy of the ACSs □ Alpha-particle condensed state (ACS) 20from N α decay thresholds \square Predicted to exist up to k ~ 10 (~ ⁴⁰Ca) 15 E (MeV) □ "Ikeda diagram" → Threshold rule ³⁶Ar 10 ³²S **Only several MeV Confirmed** Discussion No data ²⁸Si above the threshold ²⁰Ne 5 ²⁴Mg ²⁰Ne ²⁸Si 12C 16O ²⁴Mg $^{12}C: 0^+_2$ (Hoyle state) 7.27 ∞ 00000 14.44 000000 000000 0000000 19.17 38.46 28.48 $E_{\chi} = 7.65 \, \text{MeV}$ CO \bigcirc C0000 **C**00000 10 12 7.16 11 89 21.21 31.19 Only 0.38 MeV Ν T. Yamada, Phys. Rev. C 69, 024309 (2004). 000 0000 0 00 above 3α threshold 4.73 24.03 14.05 CC $C \circ C$ ¹²C density x r² 0₁+ (g.s.) [13.93 23.91 0.2 Ne Ne Ne Large radius 9.32 19.29 This talk 00 Low density 16.75 r² p(r) [fm⁻¹] Mg Mg 9.78 Ikeda digram 0_{2}^{+} (Hoyle state) Si E_x = 7.65 MeV Mass number T. Yamada et al., K. Ikeda, N. Tagikawa, H. Horiuchi, Prog. Theor. Phys. 464 (Suppl.) (1968). 0.0 0 2 8 10 6 12 Eur. Phys. J. A 26, 185 (2005). W. von Oertzen et al., Phys. Report 432, 43 (2006). r [fm]

Sep. 24th, 2020

How to excite the ACSs ?

Sep. 24th, 2020

Experiment

Experimental instruments

Excitation-energy spectra

Singles : ²⁰Ne(α,α')
 No structure above 5α threshold

\Box Alpha decay in coincidence : ²⁰Ne($\alpha, \alpha' + \alpha$)

Peaks at 23.6 & 21.8 MeV

□ Statistical significances are not fully high

```
    Alpha decay to <sup>16</sup>O(0<sup>+</sup><sub>6</sub>; Ex = 15.1 MeV):
    <sup>20</sup>Ne(α,α'+α)<sup>16</sup>O(0<sup>+</sup><sub>6</sub>)
    <sup>16</sup>O(0<sup>+</sup><sub>6</sub>): Strong candidate for 4α condensed state
    Additional peak at 21.2 MeV
```

Need to compare with the statistical decay

S. Adachi et al., <u>arXiv:2008.01632</u>, submitted to Phys. Rev. Lett.

Comparison with the statistical decay model

Decay property of the 23.6-MeV state

Sep. 24th, 2020

Some more discussion

 \square ²⁰Ne excited states above the 5 α threshold □ Alpha decay channel **23.6 MeV** : a little bit high E, from the threshold **\Box** Excited state of ACS ? (like ¹²C(2⁺₂)) **21.8** MeV : 0⁺ ? counts/10 ke/ **D**Observed state at iThemba LABS? (explained by the shell model) **21.2** MeV : 0⁺ ? Observed state at iThemba LABS? (explained by the shell model) \Box Nearest to the 5 α threshold \rightarrow ACS?

²²Ne(p,t)²⁰Ne reaction @ iThemba LABS, South Africa

12

Summary & Prospect

- Alpha-particle condensed state in finite nuclei
 - Alpha particle as a cluster in nuclei : Semi-hierarchy
 - Clue to study alpha-particle condensation in nuclear matter & EoS at low density
- Experiment
 - ${}^{20}Ne(\alpha, \alpha' + \alpha) \text{ at } \theta = 0.0^{\circ}$ using $E_{\alpha} = 386$ MeV beam
 - Gas target with very thin windows & Si detector array
- Results

S. Adachi et al., arXiv:2008.01632, submitted to Phys. Rev. Lett.

- New states at 23.6, 21.8 and 21.2 MeV : Candidates for the 5α condensed state
- Can not be explained by the statistical decay model
- 23.6-MeV state : strong decay to ${}^{16}O(0_6^+)+\alpha$
- Near-future prospect
 - More statistics & J^{π} determination of these states
 - Statistics of ACS ?

New Experiment

- LN₂ cooled ²⁰Ne target
- Large solid angle Si
- Angular distribution

RCNP E402 experiment

S. Adachi¹, Y. Fujikawa², T. Kawabata¹, H. Akimune³, T. Doi², T. Furuno⁴, T. Harada²,
K. Inaba², S. Ishida⁵, M.Itoh⁵, C. Iwamoto⁶, N. Kobayashi⁴, Y. Maeda⁷, Y. Matsuda⁵,
M. Murata⁴, S. Okamoto², A. Sakaue⁸, R. Sekiya², A. Tamii⁴, and M. Tsumura²
¹Osaka University, ²Kyoto University, ³Konan University,
⁴RCNP, Osaka University, ⁵CYRIC, Tohoku University
⁶RIKEN Center for Advanced Photonics, ⁷Miyazaki University
⁸RIKEN Center for Accelerator Based Science