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But, conventional Monte Carlo method suffers from sign problem.
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But, conventional Monte Carlo method suffers from sign problem.

Q Will Complex Langevin solve this problem 7

A. (Maybe) Yes !
But, be careful with the limitation of the Complex Langevin.

Aarts, Seiler, Stamatescu (2010), Aarts, James, Seiler, Stamatescu (2011),
Nishimura, Shimasaki (2015), Nagata, Nishimura, Shimasaki (2016)



S|ngU|ar dI’I]CJ[ pl’Ob|em Nishimura, Shimasaki (2015)

Langevin equation: Fermion determinant

dp  0(5(¢) — log[det M (¢)) Ly
O

dt
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Fermion part (u/T=1.2)

This can be singular !
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Complax Langevin fails




Banks-Casher (type) relation

Banks, Casher (1980), Kanazawa, Yamamoto (2016)
Splittorff (2016), Nagata, Nishimura, Shimasaki (2016)

Chiral condensate (X # of Dirac zero modes

Cooper pair condensate X # of zero modes of M (¢)

Inverse Nambu-Gor’'kov

ASSUFﬂp’[iOﬂSj Green function
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» Thermodynamic limit

e Chiral limit (external source term goes to 0.)

» Density channel (auxiliary field @ ~ density profile)
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When complex Langevin fails ?

0 1

8_¢ logdet M (¢) det M (o)

singularity of the drift term
~ zero modes exist

~ condensate exists
Exceptions:

/

* Finite system

« 1D, 2D

* Explicit breaking term

« Some tricky boundary conditions

e Cooper channel
\ P




Partition function in Cooper channel
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Drift term in cooper channel

Then, at least within mean field approximation,
(and omitting o dependence), the drift term is regular.
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We put A(r,z) = Ag = const. & =5— —p

Wn is Matsubara frequency.



A proposal of lattice formulation

B Based on
I + exp drH (1) |
0 Blankenbecler, Scalapino, Sugar (19871)
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[t is known that one particle Hamiltonian should be
exponentiated to reduce lattice artifact.
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Summary

& If drift term is singular, this method will fail. This will happen in
superfluid phases.

@ If we use complex Langevin in the cooper channel, the drift
term will be regular even in the superfluid phases.

& A lattice formulation in the cooper channel is proposed.

Complex Langevin is not applied in nuclear physics.
T you are interested in this technology, let’s discuss !



Physical meaning of zero modes 1/2

Add U(1) explicit breaking term to the BCS action:

Z(j) = f 1 $otpoe™Strbrvusisdti Jodr [ dirbuintino)

Cooper pair condensate (order parameter of U(1) SSB):
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Physical meaning of zero modes 2/2

One can show Banks-Caser type relation:

I=2n / T AA AR (AH)S(A)
0 /

Eigenvalue distribution of M(¢) = (GT_l - \/§¢) (GJ1 - \/Eqb)

Infinite number of zero modes = finite condensate

Kanazawa, Yamamoto, PRD 93 (2016) 016010 14



