Molecular Approach to Superfluid Nano Clusters

Susumu Kuma

Atomic, Molecular, and Optical Physics Laboratory RIKEN

2020 Sep. 24 & 25 第5回クラスター階層領域研究会

Self-introduction

Susumu Kuma Senior research scientist

Atomic, Molecular & Optical Physics Laboratory RIKEN

My research activities: experiments using ultracold atoms and molecules

Contents of this talk

- 1. Helium droplets as superfluid nano clusters
- 2. Nano-scale superfluidity probed by molecules
 - 1. Superfluid response
 - 2. Superfluid hydrogen!?
- 3. On-going projects
 - 1. Slow dynamics
 - 2. Micro- to macroscopic

Superfluidity of liquid helium

What is superfluid?

⁴He phase diagram

Bosonic nature (Delocalization of atoms)

Firstly realized in liquid ⁴He

Differences from classical liquids

- 1. Remains liquid at T=0 (at p=0)
- 2. Becomes superfluid at T = 2.17K

Capturing molecules in He droplets

Superfluid nano He droplet molecule Typical size: 10 nm molecule collisional capturing

Molecular isolation is easy!

Droplet production

"Molecular beam" = Nozzle expansion of cold, high-pressure gas

Phase diagram

0.37 K within ~10 µs => Superfluidity

Molecular rotation in He droplets

Superfluidity of helium droplets

Contents of this talk

- 1. Helium droplets as superfluid nano clusters
- 2. Nano-scale superfluidity probed by molecules
 - 1. Superfluid response
 - 2. Superfluid hydrogen!?
- 3. On-going projects
 - 1. Slow dynamics
 - 2. Micro- to macroscopic

Relation between micro-¯oscopic

Quests for the next stage of understanding superfluidity in helium droplets

<u>New probe of</u> <u>microscopic superfluidity</u>

Other superfluids

<u>Superfluidity in</u> <u>large droplets</u> Aakash, Kuma et al., Phys. Rev. A 84, 020502 (2011)

Rotational probe of molecules

Aakash, Kuma et al., Phys. Rev. A 84, 020502 (2011)

Results

Lineshape analysis for dynamics

Dynamically skewed spectral lines arise for chirped damped oscillators.

Apkarian et al. [JCP 133, 054506(2010)] Aakash, Kuma et al., Phys. Rev. A 84, 020502 (2011)

Results of skewed line analysis

Skewed parameters $\nu'(t) = \nu_c + \Delta [1 - \exp(-2\pi\beta t)]$

	Parameters				
	$\nu_c \ (\mathrm{cm}^{-1})^{\mathrm{a}}$	γ (MHz)	Δ (MHz)	β (MHz)	
P(2)	1295.9475(25)	160.5	-68.8	47.5 —	$\Delta < 0$
P(1)	1300.4409(11)	36.1	0	—	
Q(1)	1305.7325(32)	32.0	0	—	
R(0)	1311.0918(5)	40.0	0	_	
R(1)	1315.8753(19)	76.3	59.0	35.9 —	$\Delta > 0$
Mechanism <u>R(1) case</u>	J = 2	$\Delta[1 - \exp$	$\left[-2\pi\beta t \right]$	Increase after the t	in the rotational constant ransition (rotor speed-up)
$\Delta J = +1$ Solution Field Fie	₹ 10 ns	adiabatic r	esponse	Decrease	e in the moment of inertia
J = 1	 0 1 (0 20 ns	→ time	Deta Normal	achment of He atoms - to superfluid transition

Summary of the CH4 skewed lineshape

- CH₄, light rotor: sensitive probe of superfluid response of helium droplets.
- Skewed lineshape: the dynamics in the surrounding helium environment.
- Finite time (nanosecond) adiabatic response of helium in the normal- to superfluid transition

Superfluidity of p-H₂?

		C.
Species	Ts (pred.)	31
⁴ He	3.1 K (2.2 K, obs.)	
H ₂ , para	6K 🛶 🗕	— N
H ₂ , ortho	1.5 K	

Supercooled H₂ Clusters in He droplets @ 0.4 K

Next candidate

Contents of this talk

- 1. Helium droplets as superfluid nano clusters
- 2. Nano-scale superfluidity probed by molecules
 - 1. Superfluid response
 - 2. Superfluid hydrogen!?
- 3. On-going projects
 - 1. Slow dynamics
 - 2. Micro- to macroscopic

"Lifetime" of He droplets

- Circulation of ions by electrostatic fields only
- Mass-independent
- Low-T, Low-P

NNO

< 10-10 Pa

NNO

a.

 $\mathbf{N} \mathbf{O} = \mathbf{4} \mathbf{K}$

D

KEN ryogenic Electrostatic Ring

ion-doped

droplets

008.800

RIKEN Cryogenic Electrostatic Ring

Colder droplets expected in the ring

Direct observation in He droplets

HELIUM SUPERFLUIDITY

Shapes and vorticities of superfluid helium nanodroplets

Luis F. Gomez,^{1*} Ken R. Ferguson,² James P. Cryan,³ Camila Bacellar,^{3,4} Rico Mayro P. Tanyag,¹ Curtis Jones,¹ Sebastian Schorb,² Denis Anielski,^{5,6} Ali Belkacem,³ Charles Bernando,⁷ Rebecca Boll,^{5,6,8} John Bozek,² Sebastian Carron,² Gang Chen,⁹† Tjark Delmas,¹⁰ Lars Englert,¹¹ Sascha W. Epp,^{5,6} Benjamin Erk,^{5,6,8} Lutz Foucar,^{6,12} Robert Hartmann,¹³ Alexander Hexemer,⁹ Martin Huth,¹³ Justin Kwok,¹⁴ Stephen R. Leone,^{3,4,15} Jonathan H. S. Ma,^{3,16} Filipe R. N. C. Maia,¹⁷‡ Erik Malmerberg,^{18,19} Stefano Marchesini,^{9,20} Daniel M. Neumark,^{3,4} Billy Poon,¹⁸ James Prell,⁴ Daniel Rolles,^{6,8,12} **E** Benedikt Rudek,^{5,6}§ Artem Rudenko,^{5,6,21} Martin Seifrid,¹ Katrin R. Siefermann,³|| Felix P. Sturm,³ Michele Swiggers,² Joachim Ullrich,^{5,6}§ Fabian Weise,³¶ Petrus Zwart,¹⁸ Christoph Bostedt,^{2,22}# Oliver Gessner,³# Andrey F. Vilesov^{1,7}#

Shapes and vorticities of superfluid helium nanodroplets Luis F. Gomez *et al. Science* **345**, 906 (2014); DOI: 10.1126/science.1252395

Gomez et al.

Fig. 1. Experimental setup. (A) Rotating droplets are produced by expanding He fluid into a vacuum through a 5- μ m nozzle at a temperature of $T_0 \approx 5$ K and backing pressure $P_0 = 20$ bar. (B) Quantum vortices form upon evaporative cooling of rotating droplets to below T_{λ} (C) Droplets are doped with Xe atoms in a confiled with Xe gas. (D and E) X-ray diffraction images of single droplets are recorded using single FEL light pulses.

Size: 1000 nm

vortex lattice

Fig. 3. He droplets doped with Xe atoms. (A and B) X-ray diffraction images of doped droplets, displayed in a logarithmic intensity scale. (C) Droplet and embedded Xe clusters. Images in (A) and (B) correspond to tilted and parallel alignments of the vortex axes with respect to the incident x-ray beam, respectively.

35

LARGE HELIUM DROPLETS

Kuma & Azuma, Cryogenics **88**, 78 (2017)

Size measurement by beam depletion method under collision with gas

Micron-size helium droplets in a pulsed beam

SUMMARY

He droplets are unique nano-size superfluid systems.

Microscopic probe of superfluidity

- Rotational response
- New superfluid of molecular hydrogen

On-going efforts

- Slow dynamics with storage ring
- Direct probe of quantized vortices

R(1)

Collaborators

He droplet + Storage ring Arisa Iguchi (TMU) Hajime Tanuma (TMU) Toshiyuki Azuma (RIKEN)

H₂ superfluidity

Hatsuki Otani (UBC) Takamasa Momose (UBC) Shinichi Miura (Kanazawa-U)

Quantized Vortices with X-FEL James R. Harries (QST) Hiroshi Iwayama (IMS)