X-ray spectroscopy of Ξ⁻ atom in J-PARC S-2S experiment

0

2020/9/24 T. O. Yamamoto JAEA

Contents

X-ray spectroscopy of Ξ^- atom

- First try in J-PARC E07
- Coming measurement in J-PARC E03

Future measurement with S-2S experiment

Summary

X-ray spectroscopy of Ξ⁻-atom

We are aiming for world first measurement of X ray from Ξ^- -atom

\rightarrow Information on the ΞA optical potential

- Information on
 - (effective) **EN** interaction
 - large baryon mixing?
 (small ΔM(ΞN-ΛΛ)=28 MeV)
 (but, weak imaginary strength
 was predicted by lattice QCD calc.)
- **EA interaction**

and it's A dependence

Role of Ξ^- in neutron star?

Establishment of experimental method in the J-PARC E03 (Fe- Ξ^- atom) \rightarrow Systematic measurement (over wide mass range) in future

X-ray spectroscopy of Ξ⁻-atom

Physics motivation

•

Valuable information on ΞN (effective) interaction

Impact on emulsion data

Our first try in J-PARC E07

Experimental study of double hypernuclei

Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration

Our first try in J-PARC E07

For Ag- and Br-atom

Measurement (1) : Emulsion combined analysis

- S/N ratio [we can tag Ξ⁻ stop in emulsion]
- Yield rate ×
 - Low stop prob. (long flight, low density)
 - Mixture target (H, C, N, O, Br and Ag)
 - Not optimum setup for X-ray detector

J. Yoshida and M. Fujita HADRON 2019

Unfortunately, no significant peak was observed...

Coming measurement [J-PARC E03]

We are aiming for world first measurement of X ray from Ξ⁻-atom

[we can not tag Ξ^- stop,

but high stopping prob.]

High stop probability

Optimum detector setup

S/N ratio Δ

Yield rate O

Advantage of Fe target

[Technical reason]

Enough dense (~7.9 g/cm³) for higher stopping probability of Ξ^-

[Physics reason]

Absorption strength (and width) reported in theoretical case study

is suitable for our measurement

Calculated by T. Koike

(5,4) state : $\Delta E \sim \Gamma \sim 4 \text{keV}$ [W.S. shape potential of -24-3i MeV]

Recent Lattice & ChiralEFT calc. Shows <1/10 smaller imaginary strength

Data taking of 1st phase will be done in 2021.1

280

300

Energy (keV)

320

340

360

 238 ± 43 counts

(MC generate: 220)

Near future measurement with S-2S

Active fiber target [E70]

First target for S-2S experiment: ¹²C (E70 physics run in 2022-2023)

Active fiber target for energy loss correction

Merit for X-ray measurement

Feature of the X-ray measurement:

- S/N ratio (we can tag Ξ⁻ stop)
- Yield rate ×
 - Very low stop probability (low density)
 - Smaller acceptance of S-2S

Second try for C-atom measurement

Assumption for yield estimation:

- 30% X-ray yield / Estop
 - [lower than QCD based calc. (~40%)]
- ~1 month beamtime for E70

We have chance to observe X ray

Summary

We are aiming for

world first measurement of X ray from Ξ^- -atom

- \rightarrow Information on the ΞA optical potential
 - First try in J-PARC E07

Br, Ag-atom w/ emulsion analysis C-atom w/o emulsion analysis

- Coming measurement in J-PARC E03 Fe-atom w/ optimum condition
- Future measurement with S-2S experiment C-atom w/ active target [second try] and more...

We will start systematic measurement in future