Multi-strange dibaryon search at LHC-ALICE

Yorito Yamaguchi Hiroshima University

The 5th Symposium on Clustering as a window on the hierarchical structure of quantum systems

Sep. 24-25, 2020

Dibaryons in flavor SU(3)

- Long-standing challenge in hadron physics
 - ✓ Important to study fundamental hadronic interactions (N-Y, Y-Y)
 - ✓ Famous H dibaryon: six quark state of uuddss predicted in 1977
 - Not found yet, while not theoretically prohibited.
- Recent impressive works by HALQCD
 - ✓ Lattice QCD calculation at nearly physical point
 - $\succ m_{\pi} \approx 146 \text{MeV}, m_{K} \approx 525 \text{MeV}$
 - Two particle correlations & possible dibaryons for multi-strangeness systems

Heavy Ion collisions

- Study of Quark Gluon Plasma as the deconfined phase of quarks and gluons
 - ✓ LHC@CERN: Pb-Pb (5.5TeV), p-Pb, pp (14TeV)
- Dynamic space-time evolution of the collisions from initial collision to kinetic freeze-out

- 1. Initial collisions
- 2. QGP formation in $\tau < 1 \text{fm}/c$
- 3. Cross-over transition to Hadron phase at $T_c \sim 150 \text{MeV}$ $(\tau \sim a \text{ few } 10 \text{fm}/c)$
- 4. chemical freeze-out happens just after the transition
- 5. Evolution ends at kinetic freeze-out

Multi-strange baryons at LHC

- Heavy Ion collisions as a new playground for dibaryon search and baryon-baryon interactions
 - Abundant multi-strange baryons as well as loose-bound nuclei
 ALICE, PLB 728, 216-227 (2)

Measurement methods

- Mass reconstruction
 - ✓ Identify possible daughter particles
 - ✓ Peak finding of bound or resonance state
- Two particle correlation
 - Original idea: HBT interferometry to determine the Sirius angular diameter
 - Hanbury Brown & Twiss, Nature 10, 1047 (1956)
 - ✓ Pion emission source size measured by 2 pion correlation in $p\bar{p}$ annihilation
 - G.Goldhaber, S.Goldhaber, W.Lee, A.Pais, Phys. Rev. 120, 300 (1960)
 - \rightarrow Femtoscopy

Two particle correlation

$\overline{\Lambda n}$ and $\Lambda\Lambda$ bound states

- No peak was found for both longlived bound states
 - ✓ $\overline{\Lambda n}$: better S/N than Λn due to less production of anti-particles
 - ✓ H(ΛΛ): assuming H has a long lifetime as same as a free Λ
 - Required Λ and p coming from secondary vertice

$\Lambda\Lambda$ correlation in pp & p-Pb

- Flat correlation function allowing a large parameter space of d₀ and f₀⁻¹, especially in f₀⁻¹ > 0
 ✓ d₀: effective range of ΛΛ
 - ✓ f_0 : scattering length
- Small remaining region for possible bound state

✓
$$B_{\Lambda\Lambda} = 3.2^{+1.6}_{-2.4}$$
(stat.)^{+1.8}_{-1.0}(syst.)MeV

H dibaryon from lattice QCD

- H as $\Lambda\Lambda$ and NE systems calculated by HALQCD
 - Consistent $\Lambda\Lambda$ correlation with ALICE result
 - \rightarrow No bound state of $\Lambda\Lambda$
 - ✓ More attractive for NΞ
 - ✓ Sharp rise of phase shift around NE threshold
 - \rightarrow Resonance?

$p\Xi^-$ correlation in pp & p-Pb

- First experimentally observed strong attraction in NE system
 - pp 13TeV: preliminary & p-Pb 5.02TeV: already published
 - Cannot be described by only Coulomb attraction
 - Good agreement with HALQCD + Coulomb
 - ESC16 is excluded

$N\Omega$ system

- Interesting characteristics of $N\Omega$ system
 - No Pauli blocking of constituent quarks
 - Additional Coulomb attraction for $p\Omega^-$
 - Attraction predicted by HALQCD & meson exchange model
 - > Calculations for ${}^{5}S_{2}$ channel
 - \rightarrow Possible bound state
 - Decay into ΣΞ or ΛΞ

$p\Omega^-$ correlation in pp

- $p\Omega^-$ correlation in high multiplicity pp events
 - ✓ Stronger attraction than $p\Xi^-$ ($C \approx 2@k^* \sim 0$)
 - Consistent with theory calculations predicting <u>bound state</u>
- \rightarrow Interesting to make direct reconstruction
- \rightarrow Small-to-Large ratio, $C_{SL} = C(peripheral)/C(central)$
 - Cancellation of Coulomb effect

ALICE upgrades for LHC-Run3

Major upgrades in mid-rapidity

- 1. ITS upgrade
 - ✓ 6 layers (first 2 for pixel) \rightarrow 7 layers (all pixel)
 - ✓ Thinner material
- 2. GEM-TPC upgrade
 - ✓ Readout: MWPC → GEM
 - ✓ Continuous readout
- 3. New computing system (O²)
 - LHC-Run3 will start in 2022
 - Data-taking with 50kHz Pb-Pb collisions
 - ✓ 10^{11} MB events in Run3&4 = 100 times higher statistics
 - \rightarrow Possible to search for more strange dibaryon

$\Omega\Omega$ from lattice QCD

- Most strange dibaryon = $\Omega\Omega$ (sssss)
 - $\checkmark\,$ Similar characteristics with N Ω system
 - > No Pauli blocking of constituent quarks for ${}^{1}S_{0}$ (J = 0)
 - Strong attraction predicted by HALQCD
 - \rightarrow Possible bound state as same as N Ω
 - ► $B_{\Omega\Omega} = 1.6(\text{QCD}) 0.9(\text{Coulomb}) = 0.7 \text{MeV}$
 - Hope to access with the coming ALICE data

Summary

- Heavy ion collision is a new playground for dibaryon search & study of baryon interaction
 - ✓ Consistent results of $\Lambda\Lambda$, $p\Xi^-$, $p\Omega^-$ correlations with lattice QCD calculations
 - → Positive indication to discover H at $N\Xi$ threshold & $N\Omega$ bound state
- Promising to have much more exciting results with LHC-Run3 starting from 2022
 - ✓ 100 times higher statistics than present HI data, with ALICE upgrade & 50kHz Pb-Pb collisions
 - \rightarrow Hope to reach $\Omega\Omega$