Electromagnetic response of halo nuclei and its cluster aspects

Takashi Nakamura Tokyo Institute of Technology

Contents

- Halo Nuclei and Universality
- Electric Dipole (E1) Response of Halo Nuclei -- introduction
- Coulomb breakup and E1 Response of 1n halo nuclei
- Coulomb breakup and E1 response of 2n halo nuclei
- Summary and Perspective

Halo Nuclei and Universality

Nuclear Landscape at the limit (with neutron-halo nuclei)

Semi-Hierarchy: Clustering and Hierarchy of Matter

✓ Threshold: Clustering near Threshold → Semi-Hierarchy
 ✓ Degree of Freedom: Neutralization of Charge, Spin(S), Isospin(T)

- ✓ Smaller S_n : $S_n < 1 MeV << 8 MeV$ (standard value)
- ✓ Small Fermi momentum (long wave length)
- ✓ Orbital Angular Momentum: I=0, 1 (s or p)
- ✓ Large radius of halo neutron: 5-7 fm > R_{core} (2~3 fm)

Universality in 1n halo nuclei:

c.f. ³¹Ne, ³⁷Mg: p-wave halo

NOTE: ¹¹Be is NOT a pure ¹⁰Be-n system

s-wave halo component Non-halo components ${}^{11}Be(g.s) = \alpha | {}^{10}Be(0^+) \otimes v(2s_{1/2}) \rangle + \beta | {}^{10}Be(2^+) \otimes v(1d_{5/2}) \rangle + \dots$ $\alpha^2 = 0.77$ ${}^{10}Be(d,p){}^{11}Be$ B.Zwieglinski et al. NPA315,124(1979). $\alpha^2 = 0.74$ ${}^{9}Be({}^{11}Be, {}^{10}Be\gamma) X$ T.Aumann et al. PRL84,35(2000). $\alpha^2 = 0.72(4)$ Coulomb Breakup N.Fukuda, TN et. al., PRC2004

Spectroscopic Factor (分光学的因子)

Two-neutron Halo

- ✓ Smaller S_n : $S_n < 1 MeV << 8 MeV$ (standard value)
- ✓ Small Fermi momentum (long wave length)
- ✓ Orbital Angular Momentum: I=0, 1 (s or p)
- ✓ Large radius of halo neutron: 5-7 fm > $R_{core}(2^{3} \text{ fm})$
- ✓ Any of the two-body constituents are UNBOUND

Universality in 2n halo nuclei:

P.Naidon, S. Endo, Rep. Prog. Phys. 80, 056001

<u>2n Halo Nuclei</u>: Efimov States? Likely Efimov Ground State, But no Efimov resonances How about unbound resonance?

Dineutron Correlation?

What happens if "a pair of neutrons" in the external field?

NOTE: ¹¹Li is NOT a pure s-wave three-wave system

9

$$\Psi\left(\begin{smallmatrix} ^{11}Li \\ g_{,s} \end{smallmatrix}\right) = \Psi\left(\begin{smallmatrix} ^{9}Li \\ g_{,s} \end{smallmatrix}\right) \bigotimes \begin{bmatrix} \alpha | (2s)^2 \rangle + \beta | (1p)^2 \rangle + \gamma | (1d)^2 \rangle \dots \end{bmatrix}$$

$$45(10)\% \qquad ~50\%$$

H. Simon
Phys.Rev.Lett.83,496(1999)

Electric Dipole (E1) Response of Halo Nuclei

When a nucleus absorbs a photon

Coulomb Breakup →Higher Sensitivity at Low Excitation Energies →Sensitive to Soft Mode

Coulomb breakup and E1 Response of 1n-halo nuclei

Simple One-neutron Halo Nucleus

Sensitive strongly the Radial Wave function of the valence neutron

$$B(E1) \propto \left| \left\langle e^{iqr} \left| rY_m^1 \right| \Phi(r) \right\rangle \right|^2$$
$$\left\langle e^{iqr} \left| rY_m^1 \right| \Phi(r) \right\rangle \propto \int e^{iqr} r^3 \Phi(r) dr$$

B(E1) and Sum Rule

Energy Weighted Sum Rule (TRK Sum Rule) $\int \sigma_{\gamma}(E_{\gamma})dE_{\gamma} = \int \frac{16\pi^{3}}{9\hbar c}E_{x} \frac{dB(E1)}{dE_{x}}dE_{x} = \frac{9}{4\pi}\frac{\hbar^{2}e^{2}}{2m}\frac{NZ}{A}$ 38.1 e²fm²MeV for ¹¹Be Cluster sum rule Y.Alhassid, M.Gai, and G.F.Bertsch PRL49,1482(1982)

Sum=
$$60 \frac{1VL}{A} - 60 \frac{1V_c LC}{A_c} = 2.18 e^2 \text{fm}^2 \text{MeV}$$
 For ¹¹Be
Experiment (E_x<4 MeV)
Sum = $1.52 \pm 0.22 e^2 \text{fm}^2 \text{MeV}$ = 4.0(5) % of TRK Sum =70(10) % of Cluster Sum ~ Spectroscopic Factor

Non Energy Weighted Cluster Sum Rule H.Esbensen et al., NPA542, 310(1992)

$$B(E1) = \int_0^\infty \frac{dB(E1)}{dE_x} dE_x = \frac{3}{4\pi} \left(\frac{Ze}{A}\right)^2 \left\langle r^2 \right\rangle$$

Experiment: $B(E1) = 1.05 \pm 0.06 \ e^2 \text{fm}^2 \square \left\langle \sqrt{\langle r^2 \rangle} \right\rangle = 5.77 \pm 0.16 \text{fm}$

Coulomb Breakup of 1n Halo:

²⁹Ne: N.Kobayashi et al., Phys. Rev. C**93**, 014613 (2016).

小林信之:日本物理学会若手奨励賞2020

S-wave 1n Halo

¹⁹C: TN et al., Phys. Rev. Lett. **83**, 1112 (1999).
¹⁵C: TN et al., Phys. Rev C **79**, 035805 (2009).
¹¹Be N.Fukuda et al., Phys. Rev. C**70**, 054606 (2004). TN et al., Phys. Lett. B **331**, 296 (1994).

Coulomb Breakup Measurement of ³¹Ne T.Tomai et al. @SAMURAI@RIBF

Slide by T.Tomai

Interim Summary (E1 Response of 1n Halo)

• E1 Response of 1n Halo Nuclei→Soft E1 Excitation (non-resonance origin)

- Spectroscopic tool for Halo state: C²S, S_n, I
- Non-energy-weighted sum-rule \rightarrow <r²>
- Energy-weighted sum rule→ Degree of Cluster (分離度)
- Deformation driven p-wave halo \rightarrow Double-component halo?
- Universality: s-wave halo $\leftarrow \rightarrow$ ultra-cold atom near unitary limit

Coulomb breakup and E1 Response of 2n-halo nuclei

Focusing on ¹¹Li Result

Coulomb Breakup of ¹¹Li (Summary of Previous Results)

Result: E1 Response of ¹¹Li

TN, AM Vinodkumar et al., Phys. Rev. Lett. **96**, 252502 (2006).

Non-energy weighted E1 Cluster Sum Rule

Implication of the Narrow Opening Angle

Simple two-neutron shell model

$$|\Psi(^{11}\text{Li})\rangle = Core \otimes \left[\alpha \left| (1s)^2 \right\rangle + \beta \left| (0p)^2 \right\rangle \right]$$
Molting of s(+ parity) and p(parity) orbit

Melting of s(+ parity) and p(-parity) orbitals

$$\langle \cos \theta_{12} \rangle = \alpha^2 \langle (1s)^2 | \cos \theta_{12} | (1s)^2 \rangle + \beta^2 \langle (0p)^2 | \cos \theta_{12} | (0p)^2 \rangle + 2\alpha \beta \langle (0p)^2 | \cos \theta_{12} | (1s)^2 \rangle$$
$$= 2\alpha \beta \langle (0p)^2 | \cos \theta_{12} | (1s)^2 \rangle$$

If only (1s)² or (0p)² $\rightarrow \langle \cos \theta_{12} \rangle = 0, \langle \theta_{12} \rangle = 90^{\circ}$

$$\langle \theta_{12} \rangle = 48^{+14}_{-18} \text{ deg} \implies$$

Mixture of different parity states is essential
 $\alpha^2 = \beta^2 = 50\% \implies \langle \theta_{12} \rangle = 55 \text{ deg}$

Comparison with theory

Myo et al.,PRC76,024305 (2007). Core polarization (Tensor correlation+ Pauli Principle)

P(S²)~ 40%
$$\sqrt{\langle r_{c-2n} \rangle^2} = 5.69 \text{ fm}$$

Cf. H.Esbensen and G.F.Bertsch, NPA542(1992)310

Coulomb Breakup of ¹⁹B @ SAMURAI at RIBF K. Cook, TN et al.

E1 Response of ¹⁹B

 B(E1) = 1.64 ± 0.06 (stat) ± 0.12 (sys) e²fm² (E_{rel} < 6 MeV). → Signature of a halo! Similar B(E1) to ¹¹Li, ¹¹Be.

Core-2n distance (Sum rule)

 $\sqrt{\langle r_{c-2n}^2 \rangle} = 5.75 \pm 0.11 (\text{stat}) \pm 0.21 (\text{sys}) \text{ fm}$

- 3-body model calculations support S_{2n} = 0.5 MeV, substantial s-wave component with a well-developed dineutron correlation.
- Consistent with large scattering length of ${}^{17}B$ n (a < - 50fm)

K.J. Cook, T. Nakamura, Y. Kondo, K. Hagino, K. Ogata et al. PRL **124**, 212503 (2020)

Dineutron correlation in ¹⁹B

The 3-body model below (by K.Hagino) reproduces $d\sigma/dE_coul very well!$ Valence neutron density distribution for $S_{2n} = 0.5$ MeV, a = -50 fm.

- Large amount of probability at around $\theta_{12} \sim 25^{\circ} \rightarrow Dineutron \ correlation!$
- The three peaked structure: due to the d_{5/2} orbital seen also in calculations for ¹⁶C and ¹⁶Ne. Pure d-wave = three equal probability peaks. (Oishi 2010)
- Asymmetry : due to mixture of negative parity configurations
- Configurations: negative parity states = 6%, s-wave = 35%, d-wave = 56%

Interim Summary (E1 Response of 2n halo)

 E1 Response of 2n Halo Nuclei→Soft E1 Excitation Coulomb breakup →Non-resonance origin Likely: c.f. Some work claiming soft E1 resonance
 (p,p') J.Tanaka et al., Phys. Lett. B 774, 268 (2017). Ex=0.80(2) MeV, Γ=1.15(6) MeV

(d,d') R.Kanungo et al., Phys. Lev. Lett. **114**, 192502 (2015). **Ex=1.03(3)** MeV, Γ=0.51(11) MeV

- Non-energy cluster sum rule \rightarrow sqrt<r_{c-2n}²>, < θ_{nn} > \rightarrow dineutron
- Spectroscopic tool for Halo state: mixture of different parities, dineutron
- Universality: s-wave halo $\leftarrow \rightarrow$ Efimov ?

Summary

- ✓ Halo Nuclei: Existing at the limit of stability (Boundary between Nuclear and nucleon(hadron) hierarchies
- ✓ Halo Nuclei: Some common features with ultra cold atoms at unitary limit
- \checkmark Description by the scattering length/ Efimov
- ✓ Coulomb Breakup : Useful tool to probe E1 (Electric dipole) response of Halo Nuclei
- ✓ E1 Response of 1n-Halo Nuclei: Soft E1 Excitation: Non-resonant nature, Spectroscopic tool for C2S, Sn, and I
- ✓ E1 Response of 2n-halo nuclei: Soft E1 Excitation: Non-resonant nature (Some experiments showed resonance nature, though), Spectroscopic tool for nn correlation

Review:

Coulomb Breakup of 1n and 2n Halo: T.A

T. Aumann, TN, Phys. Scr T152, 014012 (2013).

TN, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53 (2017).

TN, Y. Kondo, Clusters in Nuclei, Vol. 2. p67-119 (2012).

¹⁹C: TN et al., Phys. Rev. Lett. **83**, 1112 (1999).
¹⁵C: TN et al., Phys. Rev C **79**, 035805 (2009).
¹¹Be N.Fukuda et al., Phys. Rev. C**70**, 054606 (2004). TN et al., Phys. Lett. B **331**, 296 (1994).

¹¹Li: TN et al., Phys. Rev. Lett. 96, 252502 (2006).
¹⁹B: K.J. Cook et al., Phys. Rev. Lett. 124, 212503 (2020).
⁶He: Y.Sun Submitted to PLB, A.T.Saito/C.Lehr, in preparaton
²²C: TN in preparation

Perspective

Dineutron correlation: Direct evidence/ Mechanism to be explored in the near future
 An halo or giant halo?

- Halo is common for the whole nuclear chart? Does halo exist in heavy nuclei? (37Mg is the heaviest halo nucleus known currently)
- > How Halo is relevant for Shell evolution, and the location of the neutron drip line?
- > How Halo can be understood as universal few-body quantum systems.

memo Scattering length in Nuclei

Backup

Equivalent Photon Method

$$P(b) = \int N(E_x, b) \sigma_{\gamma}(E_x) \frac{dE_x}{E_x}$$

Probability of

absorbing a = Virtual photon number x photon at b Photoabsorption cross section C.A.Bertulani and G.Baur, Phys. Rep. 163, 299, (1988)

光吸収断面積

(Photo-absorption Cross Section) Probability of absorbing one photon

$$\underline{\sigma} = \int_{R}^{\infty} P(b) 2\pi b db = \int n(E_x) \sigma_{\gamma}(E_x) \frac{dE_x}{E_x}$$

Coulomb Breakup (Excitation) cross section
$$n(E_x) = \int_{R}^{\infty} N(E_x, b) 2\pi b db$$

R: Minimum Impact parameter 最小衝突係数 (~R(P)+R(T))

Photo-absorption cross section vs B(E λ) π : *E* or *M*, λ :1,2,... $\sigma_{\gamma}^{\pi\lambda} = \frac{(2\pi)^{3}(\lambda+1)}{\lambda[(2\lambda+1)!!]^{2}} \left(\frac{E_{x}}{\hbar c}\right)^{2\lambda-1} \frac{dB(\pi\lambda)}{dE_{x}}$

> $\frac{d\sigma}{dE_x db}$, $\frac{d\sigma}{dE_x d\Omega}$ Can be described in a same manner. Scattering angle is inversely proportional to b

Quiz: Explain the virtual photon spectrum (4 page back) qualitatively.

Shape & Strength of B(E1) spectrum II

(from I.Hamamoto lecture)

For
$$\varepsilon_{\ell} < 0$$
 $R_{\ell_b}(\varepsilon_b, r) \propto \alpha r h_{\ell b}(\alpha r)$ where $\alpha^2 = -\frac{2m}{\hbar^2} \varepsilon_b$
For $\varepsilon_{\ell} > 0$ (plane wave approximation)
 $R_{\ell_c}(\varepsilon_c, r) = \sqrt{\frac{2m}{\pi \hbar^2 k}} kr j_{\ell_c}(kr)$ where $k^2 = \frac{2m}{\hbar^2} \varepsilon_c$
Note $\int_{0}^{\infty} dr R_{\ell_c}(E, r) R_{\ell_c}(E', r) = \delta(E - E')$

$\boldsymbol{\ell}_b \rightarrow \boldsymbol{\ell}_c$	$\frac{dB(E1)}{dE} \propto \mathcal{E}_{c}^{\ell_{c}+1/2}$ for very small ϵ_{c}	$\frac{dB(E1)}{dE}$ is max. at
$s \to p$	$\propto (\varepsilon_c)^{3/2}$	$\varepsilon_c = \frac{3}{5}\varepsilon_b$
$p\tos$	$\propto (\varepsilon_c)^{1/2}$	$\varepsilon_c \approx (0.18) \varepsilon_b$
$\textbf{p} \rightarrow \textbf{d}$	$\propto (\varepsilon_c)^{5/2}$	$\varepsilon_c = \frac{5}{3}\varepsilon_b$
$\textbf{d} \rightarrow \textbf{p}$	$\propto (\varepsilon_c)^{3/2}$	$\varepsilon_c = \frac{5}{3}\varepsilon_b$

相互作用によらない普遍的な現象(極低温3原子系でみつかっている)

states for the double-species mixture of K and Rb, around an interspecies Feshbach resonance where the K-Rb scattering length diverges (1/a = 0). The Efimov resonances appear: (i) at the atom-dimer threshold for positive scattering lengths a_* ; (ii) at the three-atoms threshold for negative scattering lengths a_- . Two distinct kinds of Efimov trimer are possible, KKRb (red or dark gray line) and KRbRb (blue or gray). The green or light gray line shows the dissociation threshold of the Efimov states.

K-K-RBあるいはK-Rb-RbでできたEfimov状態 C.Barontini et al. PRL103,043201 (2009) 原子核では ボロミアン核 のほか3α, Triton,¹⁸C,²⁰C などが候補 (tritonは Efimov状態: E.Braaten, H.-W.Hammer, Phys.Rep.428,259(2009)

