Two-pion emission decay of Roper-like heavy baryons

Ahmad Jafar Arifi (H. Nagahiro, K. Tanida & A. Hosaka)

「量子クラスターで読み解く物質の階層構造」スクール March, 2021

Contents

1. Roper Resonance

• History & Puzzle

2. Heavy baryons

- Roper-like states
- Problems
- Flavor universality

3. Two-pion emission decays

• Spin-parity determination

4. Summary

Roper puzzle (1963): almost 60 y.o.

 $N(1440): **** \qquad M = 1440 \text{ MeV}$ PDG $\Gamma = 350 \,\text{MeV}$ $N^* \rightarrow N\pi$ 55-75% $N^* \rightarrow N\pi\pi$ 17-50% $J^{P} = 1/2^{+}$

APC⁷

Not compatible with the quark model:

Mass, level ordering, decay property

Burkert & Robert, Rev Mod 91, 011003 (2019).

3

Light and Heavy baryons

RCNP, Osaka University

APC

Spin-parity determination

 $\Lambda_{c}(2765)$ $\Sigma_{c}^{*}(3/2^{+})$ $\Sigma_{c}(1/2^{+})$ Λ_{c}

Two-pion emission decay

- Sequential processes through $\Sigma_c^{(*)}$ states.
- The coupling strengths —> quark model.
- (FAQ) Non-resonant process is negligible (implied from exp. observation).

 $\Lambda_c(2595)$ and $\Lambda_c(2625)$

Arifi, et. al. PRD95 114018 (2017) Arifi, et. al. PRD98 114007 (2018)

Dalitz plot: $\Lambda_c^*(2765)$ decay

7

Ratio

Angular correlation

PACIFIC

APCTP

Arifi, et. al. PRD101 094023 (2020)

 $\Lambda_c^*(2765)$ decay: Convolution

Decay of $\Lambda_b^*(6072)$

LHCb analysis on $\Lambda_b^*(6072)$

- Background shape is different with the LHCb one.
- It is from the kinematical reflection.
- Sequential decay is sufficient to describe the invariant mass distribution.

non-resonant contribution is relatively large.

Decay of $\Xi_c^*(2970)$

- No kinematical reflection,
- No strong interference
- Clear signal from resonance

- • Ξ(1820) → J^P = 3/2⁻ (PDG)
 (3 star rating)
- ΛK invariant mass $\Gamma = 30$ MeV. $\rightarrow J^P = 3/2^-$
- $\Xi\pi\pi$ invariant mass
 - $\Gamma = 50-70 \text{ MeV.} \longrightarrow J^P = 1/2^+$?

 Quark model predicts several states around 1800 MeV, including 3/2⁻ and 1/2⁺.

J-PARC Exp?

APC

Summary

1. Observation of Roper-like heavy baryons

- Spin-parity: Ratio & Angular correlation
- Search for missing resonances

2. Similar behaviors

- New hint to Roper puzzle
- Flavor universality or accidental?

3. Further studies

RCNP, Osaka University

• Application to higher-excited states of heavy baryons

14

Thank you for your attention