新学術領域研究「量子クラスターで読み解く物質の階層構造」スクール 2021.3.23

through Fermi surface engineering

Taira Kawamura (Keio University)

Ryo Hanai (University of Chicago) Yoji Ohashi (Keio University)

Control of cluster formation in an ultracold Fermi gas

Contents

1. Fermi-surface reservoir-engineering

Summary 3.

2. Application to realizing unconventional Fermi superfluids

Fermi surface "the face of metal"

quantum oscillation

Kondo effect

https://ja.wikipedia.org/wiki/近藤効果

charge- (spin-) density wave state

https://ja.wikipedia.org/wiki/スピン密度波

superconductivity

https://ja.wikipedia.org/wiki/超伝導

Fermi surface "the face of metal"

superconductivity

Cooper pair with zero center-of-mass momentum BCS state Bardeen, Cooper, and Schrieffer (1957)

Cooper pair with finite center-of-mass momentum **FF(LO) state** Fulde and Ferrell (1964), Larkin and Ovchinnikov (1965)

Control of Fermi surfaces

change a structure/topology of a Fermi surface

	pressure	C. W. Chu, T. F. Smith, and W. E. Gardner, Phys. Rev. B 1 , 214 (1970) A. Rodriguez-Prieto, <i>et.al.</i> , Phys. Rev. B, 74 , 172104 (2006)
	strain	L. R. Testardi and J. H. Condon, Phys. Rev. B 1 , 3928 (1970) J. M. V. Martins, <i>et.al.</i> , Phys. Rev. B 17 , 4633 (1978)
•	doping :	N. P. Armitage, <i>et.al.</i> , Phys. Rev. Lett. 88 , 257001 (2002) A. Kaminski, <i>et.al.</i> , Phys. Rev. B 73 , 174511 (2006)

phase transitions trigged by changes in the topologyof Fermi surfacesLifshitz transition

Laser (non-equilibrium) S. Beaulieu, et. al., arXiv:2003.04059

 $T_d - MoTe_2$ Weyl semimetal

Theory: time-dependent self-consistent Hubbard U calculations

experiment : time-resolved multidimensional photoemission spectroscopy

Contents

1. Fermi-surface reservoir-engineering

2. Application to realizing unconventional Fermi superfluids

3. Summary

Driven-dissipative Fermi gas

Driven-dissipative Fermi gas

Driven-dissipative Fermi gas

Model Hamiltonian

$$\mathcal{H}_{\text{tot}} = \mathcal{H}_{\text{sys}} + \mathcal{H}_{\text{env}} + \mathcal{H}_{\text{mix}}$$

$$\text{main system} \qquad \mathcal{H}_{\text{sys}} = \sum_{p,\sigma=\uparrow,\downarrow} \varepsilon_p a_{p\sigma}^{\dagger} a_{p\sigma} - U \sum_{p,p',q} a_{p+q/2\uparrow}^{\dagger} a_{-p+q/2\downarrow}^{\dagger} a_{-p'+q/2\downarrow} a_{p'+q/2\uparrow} a_{p'+q/2\uparrow}^{\dagger} a_{-p+q/2\downarrow} a_{p'+q/2\downarrow} a_{p'+q/2\uparrow}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'+q/2\downarrow} a_{p'+q/2\uparrow}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'+q/2}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'+q/2\downarrow}^{\dagger}$$

• environment temperature T_{env}

• chemical potential bias $\delta\mu$

• dissipation strength $\gamma = \pi N_t \rho |\Lambda|^2$

$$\sigma = \uparrow, \downarrow$$
 pseudo-spin of atoms

annihilation operator of $a_{p\sigma}$ a fermion in the main system annihilation operator of $c_{\boldsymbol{p}\sigma}^{\alpha=\mathrm{L.R}}$ a fermion in the reservoir

Model Hamiltonian

$$\mathcal{H}_{\text{tot}} = \mathcal{H}_{\text{sys}} + \mathcal{H}_{\text{env}} + \mathcal{H}_{\text{mix}}$$

$$\text{main system} \qquad \mathcal{H}_{\text{sys}} = \sum_{p,\sigma=\uparrow,\downarrow} \varepsilon_p \, a_{p\sigma}^{\dagger} a_{p\sigma} - U \sum_{p,p',q} a_{p+q/2\uparrow}^{\dagger} a_{-p+q/2\downarrow}^{\dagger} a_{-p'+q/2\downarrow} a_{p'+q/2\uparrow} a_{p'+q/2\uparrow}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'+q/2\downarrow} a_{p'+q/2\uparrow}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'+q/2}^{\dagger} a_{p'+q/2\downarrow}^{\dagger} a_{p'$$

ironment temperature
$$T_{env}$$
 $(T_{env} = 0)$

• chemical potential bias $\delta\mu$

• dissipation strength $\gamma = \pi N_t \rho |\Lambda|^2$

$$\sigma = \uparrow, \downarrow$$
 pseudo-spin of atoms

annihilation operator of $a_{p\sigma}$ a fermion in the main system annihilation operator of $c_{p\sigma}^{\alpha=\mathrm{L.R}}$ a fermion in the reservoir

Non-equilibrium superfluid phase (NESS: non-equilibrium steady state)

steady-state ansatz $\Delta(\mathbf{r}, t) = \Delta e^{i\mathbf{Q}\cdot\mathbf{r}} e^{-2i\mu t}$

Fulde-Ferrell type order parameter

Nambu lesser Green's function

 $-i\mathcal{G}_{p}^{<} = \begin{pmatrix} \langle a_{p\uparrow}^{\dagger} a_{p\uparrow} \rangle & \langle a_{-p\downarrow} a_{p\uparrow} \rangle \\ \langle a_{p\uparrow}^{\dagger} a_{-p\downarrow}^{\dagger} \rangle & \langle a_{-p\downarrow} a_{-p\downarrow}^{\dagger} \rangle \end{pmatrix}$ - diagonal component particle density - off-diagonal component - diagonal component pair amplitude

R. Hanai, P. B Littlewood, and Y. Ohashi, Phys. Rev. B 96, 125206 (2017)

equations determining NESS solutions

Non-equilibrium superfluid phase (NESS: non-equilibrium steady state)

large

► BCS, IG (Q=0)

▶ FF1, FF2 $(Q \neq 0)$

p p

Non-equilibrium superfluid phase (stability analysis)

fluctuations from the NESS $\delta |\Delta(\mathbf{r}, t)| = |\Delta(\mathbf{r}, t)| - \Delta_{\text{NESS}}$

time-evolution of the superfluid order parameter Δ

$$\int_{-\infty}^{\infty} \left[\mathcal{G}^{-1} \mathcal{G}^{<} - \mathcal{G}^{<} \mathcal{G}^{-1} \right] (\boldsymbol{p}, \boldsymbol{r}, t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[\Sigma^{\mathrm{R}} \otimes \mathcal{G}^{<} - \mathcal{G}^{<} \otimes \Sigma^{\mathrm{A}} - \mathcal{G}^{<} \right]$$

driving term

✤ self-energy

 Σ = Hartree-Fock-Bogoliubov app. + 2nd Born app.

• gradient approximation $[A \otimes B](\boldsymbol{p}, \omega, \boldsymbol{r}, t) \simeq A(\boldsymbol{p}, \omega, \boldsymbol{r}, t)B(\boldsymbol{p}, \omega, \boldsymbol{r}, t)$

$$i \frac{\partial}{\partial t} \mathcal{G}_{\boldsymbol{p}}^{<}(\boldsymbol{r},t) = \left[\xi_{\boldsymbol{p}} - \Delta(\boldsymbol{r},t)\tau_{+} - \Delta^{*}(\boldsymbol{r},t)\tau_{-}, \mathcal{G}_{\boldsymbol{p}}^{<}(\boldsymbol{r},t) \right]$$

$$-\frac{i}{2}\left\{\boldsymbol{v}_{\boldsymbol{p}}, \mathcal{G}_{\boldsymbol{p}}^{<}(\boldsymbol{r}, t)\right\} - \frac{i}{2}\left\{\frac{\boldsymbol{Q}}{2m}\tau_{0}, \nabla \mathcal{G}_{\boldsymbol{p}}^{<}\right\}$$

TABLE I: Obtained superfluid NESS solutions in region R1-R4. Here,

In this subsectemy in the stability analysis solutions. We first fix the environment temperature $T_{env}(=0)$ are

time

Contents

1. Fermi-surface reservoir-engineering

2. Application to realizing unconventional Fermi superfluids

3. Summary

Summary

- We theoretically propose an idea to process the structure for the state which we want to realize.
- As an application of the FS reservoir-engineering, we have considered the driven-dissipative non-equilibrium Fermi gas.
- The "two effective FSs" processed by the FS reservoir-engineering are found to really work like two FSs and stabilize the exotic superfluid states, where the Cooper pair has a finite center-of-mass momentum.

• We theoretically propose an idea to process the structure of a Fermi surface (FS) with reservoirs so as to be suitable

IS.