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〇Introduction



BCS-BEC crossover phase diagram of two-component Fermi gas

BCS-BEC crossover(single band) 



Multi-band systems
BCS BEC

▶ FeSe iron based superconductor
▶Yb Fermi gases near 

the orbital Feshbach resonance

Rinott et al., Sci. Adv. 2017;3:e1602372 

G. Pagano, et al., Phys. Rev. Lett. 115,265301 (2015). 

・The multi-band system has also been 

realized  in a cold atomic system.

・The unitarity limit and the strong-coupling BEC regime are 

realized in both solid-state systems and cold atomic systems.

ΤΔ 𝐸F = 0.16~0.5



Multi-band systems

The multi-band systems involve various 

degrees of freedom not found in single band.

Interband interaction

𝑈12, 𝑈21

Energy shift 𝐸0
Mass ratio

𝑚1/𝑚2

Intraband interaction

𝑈11, 𝑈22



Our purpose(𝑘𝑧 = 0 projection)

We clarify how the superfluid/superconducting gaps and effective 

intraband interaction behave in the presence of the pair-exchange 

coupling  and the effective mass difference between the two bands.

We investigate the two band 

BCS-BEC crossover when the 

second band has its edge located 

close to the chemical potential 

(incipient band). 𝐸0

・µ is controllable. 
・Interaction strengths are fixed.
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Two band model hamiltonian
▶Hamiltonian 𝑼𝟏𝟏
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● annihilation operator of a fermion in band 𝑖 : 𝑐𝒌,𝜎,𝑖

●chemical potential: 𝜇

● Energy difference between two bands : 𝐸0

●cutoff 𝜦●different masses 𝑚1, 𝑚2

𝜉𝑘𝑖 = ൗ𝑘2
2𝑚𝑖

− 𝜇 + 𝐸0𝛿𝑖2

・Cold-atom systems: 

orbital Feshbach 

resonance

Interband pair 

exchange interaction

・Solid state systems:

Suhl-Kondo mechanism

Intraband interaction



BCS mean field theory
▶Gap equation

Δ𝑖 = ෍

j=1,2

𝑈𝑖𝑗Δ𝑗෍

𝒌′

𝛬
tanh

𝐸𝑘′𝑗
2𝑇

2𝐸𝑘′𝑗

𝐸𝑘𝑖 = 𝜉𝑘𝑖
2 + Δ𝑖

2

▶Intraband interactions
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▶Interband pair exchange interactions
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〇Results
・Superfluid/superconducting gap



𝐒𝐮𝐩𝐞𝐫𝐜𝐨𝐧𝐝𝐮𝐜𝐭𝐢𝐧𝐠 𝐠𝐚𝐩( Τ𝒎𝟏 𝒎𝟐 = 𝟏)
▶Sc gap in Band 1

Increasing Δ1, Δ2 due to 𝑈12 is  consistent 

with the Suhl-Kondo mechanism.

21

▶Sc gap in Band 2

(Stabilaized by interband transition)



Δ1,2 is prominent for the smallest Τ𝑚1 𝑚2 where the incipient                      

band dispersion becomes flat.

𝐒𝐮𝐩𝐞𝐫𝐜𝐨𝐧𝐝𝐮𝐜𝐭𝐢𝐧𝐠 𝐠𝐚𝐩( Τ𝒎𝟏 𝒎𝟐 = 𝟎. 𝟐𝟓)

▶Sc gap in Band 1 ▶ Sc gap in Band 2

2 1 The presence of pair condensation in the 

incipient band located far above µ.

Δ1,2 is remarkably enhanced with increasing 

𝑚2 due to increment in the density of state.


