ダブル∧ハイパー核の分光実験に 用いるガス検出器の 読み出しシステム構築と性能評価

本研究の位置付け

Hypernuclei with S = -2

Double Λ Hypernuclei are formed by $\Xi^- p \rightarrow \Lambda \Lambda$ conversion in nuclei, where a Ξ^- hyperon is produced in the $p(K^-, K^+)\Xi^-$ reaction.

Tokyo Institute of Technology

ΛΛ, EN interaction

K. Sasaki et al. (HAL-QCD Collaboration) NPA 998 (2020) 121737

東京

Tokyo Institute of Technology

4/2

Study of EN, $\Lambda\Lambda$ interaction

ALICE, PRL 123, 112002 (2019) ALICE, PLB 797, 134822 (2019) Ahn et al., PLB 633, 214 (2006)

E Hypernuclei

Double-A Hypernuclei

s-shell nuclei

s-shell single-A hypernuclei

s-shell double-A hypernuclei

(as of June 2021)

NAGARA Event

H. Takahashi et al., Phys. Rev. Lett. **87**, 212502 (2001); J.K. Ahn et al., Phys. Rev. C **88**, 014003 (2013)

s-shell double-A hypernuclei

(expectation)

ASHO ASHO

151.

132 15H

Many theoretical calculations supports the existence of the A = 5 isodoublet $\begin{pmatrix} 5 \\ \Lambda\Lambda \end{pmatrix} + \begin{pmatrix} 5 \\ \Lambda\Lambda \end{pmatrix} + \begin{pmatrix} 5 \\ \Lambda\Lambda \end{pmatrix}$

L. Contessi et al., Phys. Lett. B **797**, 134893 (2019) G. Meher and U. Raha, Phys. Rev. C **103**, 014001 (2021) and references therein

J-PARC E75 Experiment

will investigate $^{5}_{\Lambda\Lambda}$ H.

https://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P75_2019-09.pdf

藤岡 宏之 第6回クラスター階層領域研究会

31

Proposal for J-PARC 50 GeV Synchrotron

Decay Pion Spectroscopy of ${}^{5}_{\Lambda\Lambda}$ H Produced by Ξ -hypernuclear Decay

Hiroyuki Fujioka^{1*}, Tomokazu Fukuda^{2,3†}, Toshiyuki Gogami⁴, Emiko Hiyama^{5,3‡}, Yuhei Morino⁶, Toshio Motoba^{2,7}, Tomofumi Nagae⁴, Sho Nagao⁸, Toshiyuki Takahashi⁶, Atsushi O. Tokiyasu⁹

¹ Department of Physics, Tokyo Institute of Technology
² Osaka Electro-Communication University
³ RIKEN Nishina Center
⁴ Department of Physics, Kyoto University

⁵ Department of Physics, Kyushu University

⁶ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization

⁷ Yukawa Institute for Theoretical Physics, Kyoto University

⁸ Institute for Excellence in Higher Education, Tohoku University

⁹ Research Center for Electron Photon Science (ELPH), Tohoku University

December 14, 2018

宏之

第6回クラスター階層領域研究会

藤岡

http://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P75_2019-09.pdf

10/23 東京工業大学

Why is ${}_{\Lambda\Lambda}^{5}$ H special? (1)

The lightest Double Λ Hypernuclei will be ${}_{\Lambda\Lambda}{}^5H/{}_{\Lambda\Lambda}{}^5He$

宏之

第6回クラスター階層領域研究会

藤岡

cf. L. Contessi et al., Phys. Lett. B 797, 134893 (2019)

第6回クラスター階層領域研究会

$\Lambda\Lambda$ -EN int. and $\Delta B_{\Lambda\Lambda}$, E mixing

$$V_{\Lambda\Lambda,\Xi N}(r)d^3r$$

D. E. Lanskoy and Y. Yamamoto, Phys. Rev. C 69, 014303 (2004)

$\Delta B_{\Lambda\Lambda}$ の値から、 $\Lambda\Lambda$ -EN結合ポテンシャルを評価する

Production of ${}_{\Xi}^{7}$ H

E75 Phase-1 Proposal https://j-parc.jp/researcher/Hadron/en/pac_2001/pdf/P75_2020-02.pdf

E. Hiyama and T. Koike, private communication

14/

Tokyo Institute of Technology

Stage-1 approved

宏之

第6回クラスター階層領域研究会

藤岡

Phase-1 of the P75 experiment: Measurement of the formation cross section of ${}_{\Xi}^{7}$ H in the 7 Li(K^{-} , K^{+}) reaction

Shuhei Ajimura¹, Hiroyuki Fujioka^{2*}, Tomokazu Fukuda^{3,4†}, Toshiyuki Gogami⁵, Emiko Hiyama^{6,4‡}, Yuhei Morino⁷, Toshio Motoba^{3,8}, Tomofumi Nagae⁵, Sho Nagao⁹, Akane Sakaue⁵, Toshiyuki Takahashi⁷, Yosuke Taki², Atsushi O. Tokiyasu¹⁰, Makoto Uchida², Masaru Yosoi¹

¹ Research Center for Nuclear Physics (RCNP), Osaka University
² Department of Physics, Tokyo Institute of Technology
³ Osaka Electro-Communication University

⁴ RIKEN Nishina Center

⁵ Department of Physics, Kyoto University

⁶ Department of Physics, Kyushu University

⁷ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization

⁸ Yukawa Institute for Theoretical Physics, Kyoto University

⁹ Department of Physics, Tohoku University

¹⁰ Research Center for Electron Photon Science (ELPH), Tohoku University

December 9, 2019

http://j-parc.jp/researcher/Hadron/en/pac_2001/pdf/P75_2020-02.pdf

Tokyo Institute of Technology

第6回クラスター階層領域研究会

Production and Decay of ${}_{\Lambda\Lambda}^{5}\!H$

ANHO ANHO

 Λ^{5}_{Λ} T.

 $3 \times \Lambda ^{5} H$

Mass of ${}_{\Lambda\Lambda}{}^{5}H$ will be determined (decay pion spectroscopy)

 $_{\Lambda\Lambda}{}^{5}H \rightarrow _{\Lambda}{}^{5}He + \pi^{-}$

 $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}$

 $p_{\pi^-} \approx 132.9 \,\mathrm{MeV}/c$

 $132 - 135 \, \text{MeV}/c$

31

Experimental Setup

$^{7}\text{Li}(K^{-}, K^{+})_{\Xi^{-}}^{7}\text{H}$ (missing-mass spectroscopy) K1.8 + "S-2S" (common to E70 Exp.)

 $^{5}_{\Lambda\Lambda}H \rightarrow ^{5}_{\Lambda}He + \pi^{-}$ (decay pion spectroscopy) Cylindrical Detector System <u>solenoid magnet + TPC</u> + ...

Superconducting solenoid

Time Projection Chamber

Integrity assessment in Oct.-Nov. 2019
We observed analog signals from every sense wire.

supported by Joint Usage/Research Programs of RCNP

- The TPC was moved to TokyoTech in Nov. 2020.
- ●本研究では TPC の読み出しシステム整備、性能評価

新学術領域「クラスター階層」「量子ビーム応用」合同検出器ワークショップ (2019年度) 味村周平氏(大阪大RCNP)のスライドより引用

- J-PARC において ${}_{\Lambda\Lambda}^{5}$ H の分光実験を提案している。
 - ► $_{\Lambda\Lambda}^{6}$ He と異なり、 $\Lambda\Lambda$ - ΞN 結合が寄与する可能性。
 - ► Ξハイパー核 _Ξ⁷H の崩壊により生成する。

第6回クラスター階層領域研究会

- ・ ${}^{5}_{\Lambda\Lambda}$ H → ${}^{5}_{\Lambda}$ He + π^{-} という崩壊により生じた π^{-} 中間子の運動量を測定することで ${}^{5}_{\Lambda\Lambda}$ H の質量を決定する。
- 本研究ではπ⁻中間子と陽子の運動量解析に用いるTPCの読み 出しシステムの整備、TPCの性能評価を実施する。
 藤岡 宏之

