アクティブ炭素標的を用いた グザイ原子X線分光

X-ray spectroscopy of Xi⁻ atom using active fiber carbon target

2021/6/14 T. O. Yamamoto JAEA/ASRC (Japan)

Contents

- X-ray spectroscopy of Ξ^- atom
- C Ξ⁻ atom measurement: First try [J-PARC E07]
- Resent Fe Ξ⁻ atom measurement [J-PARC E03]
- Future measurement for C Ξ⁻ atom [J-PARC E70]
 - Summary

X-ray spectroscopy of Ξ⁻-atom

We are aiming for

world first measurement of X ray from Ξ^- -atom

 \rightarrow Information on the ΞA optical potential

Information on
 (effective) ΞN interaction
 large baryon mixing?
 (small ΔM(ΞN-ΛΛ)=28 MeV)
 ΞA interaction

and it's A dependence Role of Ξ^- in neutron star?

Establishment of experimental method in the J-PARC E03 (Fe- Ξ^- atom) \rightarrow Systematic measurement (over wide mass range) in future

X-ray spectroscopy of Ξ⁻-atom

Physics motivation

•

Valuable information on ΞN (effective) interaction

Impact on emulsion data

Our first try in J-PARC E07

Experimental study of double hypernuclei

Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration

Our first try in J-PARC E07

For Ag- and Br-atom

Measurement (1) : Emulsion combined analysis

- S/N ratio [we can tag Ξ⁻ stop in emulsion]
- Yield rate ×
 - Low stop prob. (long flight, low density)
 - Mixture target (H, C, N, O, Br and Ag)
 - Not optimum setup for X-ray detector

J. Yoshida and M. Fujita HADRON 2019

Unfortunately, no significant peak was observed...

Advantage of Fe target

[Technical reason]

Enough dense (~7.9 g/cm³) for higher stopping probability of Ξ^-

[Physics reason]

Absorption strength (and width) reported in theoretical case study

is suitable for our measurement

Calculated by T. Koike

(5,4) state : $\Delta E \sim \Gamma \sim 4 \text{keV}$ [W.S. shape potential of -24-3i MeV]

Recent Lattice & ChiralEFT calc. Shows <1/10 smaller imaginary strength

- information of absorption strength from $(6 \rightarrow 5)/(7 \rightarrow 6)$
- < 2nd phase > 100% statistics
 - (6 \rightarrow 5) shift & width

(if Γ~4 keV)

Hyperball-X' for 1st phase

BGO suppressor

"clover-type" Ge detector (4 segmented crystals)

Optimum for

low beam intensity

4 detector units with vertically covered configuration

- Horizontally wide beam profile and target
- Self-absorption of X ray is serious for horizontal direction

F~1keV case,

Higher energy resolution has great merit

- better peak significance
- small error on shift & width

	HBX'	HBJ
High rate capability	 ▲ * slow amp. * segmented crystal 	O * fast amp. * large crystal * radiation hardness
Energy resolution	2.5 keV (FWHM)	4 keV (FWHM)

Detector preparation [2020.7-2021.12]

E03 setup @ K1.8

Magnetic spectrometer (for tagging Ξ^- production)

KURAMA spectrometer

- modified from previous E40
- common with next E42

Ge detector array (for detecting X rays)

Hyperball-X' (modified from E07)

- Clover-type Ge detector x4
- BGO Compton suppressor x4

We just started data analysis.

- Event selection
- Calibration
- B.G. suppression

We will report E03 result in near future

Future measurement with S-2S

Active fiber target [E70]

First target for S-2S experiment: ¹²C (E70 physics run in 2022-2023)

Active fiber target for energy loss correction

Merit for X-ray measurement

Feature of the X-ray measurement:

- S/N ratio (we can tag Ξ⁻ stop)
- Yield rate ×
 - Very low stop probability (low density)
 - Smaller acceptance of S-2S

Second try for C-atom measurement

Assumption for yield estimation:

- 30% X-ray yield / Estop
 - [lower than QCD based calc. (~40%)]
- ~1 month beamtime for E70

We have chance to observe X ray

X-ray spectroscopy of Xi-atom at J-PARC K1.8 beam line

Summary

We are aiming for

world first measurement of X ray from Ξ^- -atom

- \rightarrow Information on the ΞA optical potential
 - Test of Experimental technique in J-PARC E07 [X-ray spectroscopy: C, Br, Ag-atom]
 - \succ E03 (Ξ^{-} Fe-atom measurement)
 - **2 phase strategy for current ACC condition**

>1st-phase data taking [2020-2021] Just finished

Future measurement in S-2S exp. (J-PARC E70) [X-ray spectroscopy: C-atom]