

SCATTERING AMPLITUDE ANALYSIS USING NEURAL NETWORKS

National Institute of Physics, University of the Philippines Diliman

YOICHI IKEDA TORU SATO **ATSUSHI HOSAKA**

DLBS, YI, TS, AH PRD 102 016024 (2020) DLBS, YI, TS, AH Few-Body Syst. 62, 52 (2021) DLBS, YI, TS, AH PRD 104 036001 (2021)

DLBSOMBILLO / 2022.10.31-11.03

DENNY SOMBILLO

CLUSHIQ 2022 EMMI WORKSHOP

Approaches in hadron spectroscopy

- What is the experiment telling us?

Approaches in hadron spectroscopy

The bottom-up strategy can be augmented by the deep learning approach.

Classifier-type DNN already in use:

- Bound-virtual for single channel
- Pc(4312)
- Pole configuration

DLBSOMBILLO / 2022.10.31-11.03

DLBS, YI, TS, AH PRD 102 016024 (2020) DLBS, YI, TS, AH Few-Body Syst. 62, 52 (2021)

JPAC Collaboration PRD 105 L091501 (2020)

DLBS, YI, TS, AH PRD 104 036001 (2021)

CLUSHIQ 2022 EMMI WORKSHOP

Deep learning: alternative analysis tool

Benchmarked on the known nucleon-nucleon bound state Given only the s-wave cross section, the origin of enhancement can be unambiguously identified.

In addition to the near-threshold pole, the S-matrix can have distant singularities on the unphysical sheet.

Use different (unitary, analytic) backgrounds to help DNN distinguish bound and virtual enhancements.

DLBS, YI, TS, AH PRD 102 016024 (2020) DLBS, YI, TS, AH Few-Body Syst. 62, 52 (2021)

For near-threshold pole: $k \cot \delta \sim -1/a$ (constant) $|f(k)|^{-2} = |k \cot \delta - ik|^2 \sim \frac{1}{\alpha^2} + k^2$

There is no way to discriminate a bound state pole enhancement with a virtual enhancement using only $|f(k)|^2$ on the scattering region.

$$S(k) = \exp\left[2i\delta_{bg}(k)\right]\frac{k+i\gamma}{k-i\gamma}$$

Deep learning: alternative analysis tool

Optimize parameters of DNN using mock amplitudes

DLBSOMBILLO / 2022.10.31-11.03

Trained and validated DNN deployed to probe the nucleon-nucleon

	PWA93	ECS96	NijmI	NijmII	Nijm93	Reid93
${}^{1}S_{0}$	virtual	virtual	virtual	virtual	virtual	virtual
${}^{3}S_{1}$	bound	bound	bound	bound	bound	bound

		_	
		_	
_			
		_	

Pole structure of coupled channel system

The nature of enhancement can only be deduced in a model-dependent way.

We can at least extract the pole configuration in a model-independent way.

How many nearby poles Riemann sheet are neede reproduce the experimen

Inspired by: Two-pole structure of $\Lambda(1405)$

T. Hyodo and U. -G. Meißner PDG 2021 review

Pole-counting argument - nature of $f_0(S^*)$ (aka $f_0(S^*)$)

D. Morgan and M. R. Pennington PRD 48 1185 (1993)

D. Morgan Nuc. Phys. A 543 632-644 (1992)

DLBSOMBILLO / 2022.10.31-11.03

Badalyan, et. al., Phys. Rep. 82, 2, 31-177 (1982)

Table 1.1

Classification of the two-channel poles. In the column "Origin" we indicate the type of one-channel pole which obtains by switching off the coupling to the second channel (with lower threshold)

ed to ntal data? UBS BS II, lower unstable state IVS VS IV, upper inelastic virtual s BW BW III, lower Breit-W main BW* BW* III, upper Breit-W	
IVSVSIV, upperinelastic virtual sBWBWBWIII, lowerBreit-W mainBW*BW*BW*III, upperBreit-W origon	le bo
BWBWIII, lowerBreit-WBW*BW*BW*III, upperBreit-W	c state
BW* BW* III, upper Breit-W	Nign
conjuga	Nign ate n
BW ₁ BW II or IV, Breit-W lower shadow	Vign ,
(980)) BW [*] BW [*] II or IV, Breit-W upper conjuga	Nign ate s
CC infinity or II, III, or IV, coupled distant singularity lower and upper pole	i-cha

Pole structure of coupled channel system

DNN task:

Count the number of nearby poles in each Riemann sheet using only the scattering data.

Model space restriction:

Maximum of 4 poles, distributed in any of the unphysical sheets.

Two-channel case: 35 possible pole configurations

Label	S-matri	x pol	e con	figurat	ion	
0	no nearb	y pole)			
1	1 pole in	[bt]				
2	2 poles in	n [<i>bt</i>]				
:	:	•	:	:		
$32 \\ 33 \\ 34$	1 pole in 1 pole in 1 pole in	$[bt], \ 2 \ [bt], \ 1 \ [bt], \ 1 \ [bt], \ 1$	poles pole pole	s in [<i>bb</i>] in [<i>bb</i>] a in [<i>bb</i>] a	and 1 p nd 2 pc nd 1 pc	ole in $[tb]$ oles in $[tb]$ ole in $[tb]$

DLBSOMBILLO / 2022.10.31-11.03

data due to the error bars.

Pole structure of coupled channel system

DL approach:

Generate the training dataset

- •Use only the general properties of S-matrix
- Include the energy uncertainty
- Optimize the parameters of the deep neural network

Input layer:

- Energy points
- Real part of amplitude
- Imaginary part of amplitude

Deploy the trained DNN to extract model from the experimental data.

Output layer:

- Pole config. 0
- Pole config. 1
- Pole config. 2
- Pole config. 34

Sample result:

• • •

- X% 2[bt]-0[bb]-0[tb]
- Y% 0[bt]-2[bb]-0[tb]
- Z% 0[bt]-1[bb]-3[tb]

Training dataset (generation of model space)

General form of S-matrix:

- •Hermiticity below the lowest threshold
- Unitarity
- Analyticity

$$S_{11}(p_1, p_2) = \prod_{m} \frac{D_m(-p_1, p_2)}{D_m(p_1, p_2)}$$

$$S_{11} = 1 + 2iT_{11}$$

The available experimental data will determine the relevant matrix element. Ensure that only one nearby pole E_m is generated by each $D_m(p_1, p_2)$.

$$D_m(p_1, p_2) = \left[\left(p_1 - i\beta_{1m} \right)^2 - \alpha_{1m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{1m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{1m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[\left(p_2 - i\beta_{2m} \right)^2 - \alpha_{2m}^2 \right] + \lambda_m \left[$$

KJ Le Couteur, Proc. Roy. Soc (London) A256 (1960) RG Newton J. Math. Phys. 2, 188 (1961)

$$S_{22}(p_1, p_2) = \prod_m \frac{D_m(p_1, -p_2)}{D_m(p_1, p_2)}$$
$$S_{11}S_{22} - S_{12}^2 = \prod_m \frac{D_m(-p_1, -p_2)}{D_m(p_1, p_2)}$$

 β_{2m})² - α_{2m}^2 | $\alpha_{1m}, \alpha_{2m}, \beta_{1m}$, and β_{2m} are related to E_m . Do not let β_{1m} and β_{2m} be both positive. (Analyticity) The RS is determined by the signs of β_{1m} and β_{2m} . Extra parameter λ_m to push the other pole far from the scattering region without violating analyticity.

Training dataset (generation of model space)

Incorporate uncertainty in the energy:

(4) Label each amplitude according to its pole-configuration

Label	S-matri	x pol	le c	onfi	iguı	\mathbf{rat}	ion		
0	no nearb	y pole	е						
1	1 pole in	[bt]							
2	2 poles in	n [bt]							
:	:	:	:		:				
32	1 pole in	[bt], 2	2 po	les i	in [ł	bb] :	and	1 pc	ole i
33	1 pole in	[bt], 1	l po	le ir	n [bł	b] a	nd f	2 pol	les i
34	1 pole in	[bt], 1	l po	le ir	n [bł	b] a	nd	1 pol	le in

Optimization of DNN model

Chosen DNN architecture

Layer	Number of nodes	Activation Function
Input	111 + 1	
1 st	200 + 1	ReLU
2nd	200 + 1	ReLU
3 rd	200 + 1	ReLU
Output	35	Softmax

Performance in curriculum training

DLBSOMBILLO / 2022.10.31-11.03

CLUSHIQ 2022 EMMI WORKSHOP

We adopted the **curriculum method** to train the DNN using the noisy dataset.

After $\sim 31,000$ epochs the final training and testing accuracies are 76.5 % and 80.4 % , respectively.

Noticeable saturation

Can this be improved?

d?

Intrinsic ambiguity in the lineshape

 ϵ_2

Identical lower channel amplitude. Higher channel amplitude can be distinguished.

3700

3800

3600

3900

 \sqrt{s}

Amplitude with one pole in [bt] sheet.

Amplitude with one pole in each unphysical sheet. The two extra poles have the same energy values.

The only way to improve the DNN performance is to include the higher (or off-diagonal) channel amplitude.

Inference stage: application

- Draw points from each error bar using a Gaussian distribution.
- Construct inference amplitudes from the experimental data using the drawn points.
- •Feed the inference amplitudes to the trained DNN.

Interference on 10⁶ amplitudes

- 44.6% 1[bt]-1[bb]-2[tb]
- 34.1% 1[bt]-1[bb]-1[tb]
- 16.4% 0[bt]-1[bb]-3[tb]
- 04.9% 0[bt]-1[bb]-2[tb]

Inference stage: application

DLBSOMBILLO / 2022.10.31-11.03

Interference on 10⁶ amplitudes Using uniform distribution

- 60.3% 1[bt]-1[bb]-2[tb]
- 30.9% 1[bt]-1[bb]-1[tb]
- 07.5% 0[bt]-1[bb]-3[tb]
- 01.3% 0[bt]-1[bb]-2[tb]

- •We can teach DNN:
- Deep learning approach can be used as a model-selection framework.
- ansatz appropriate for a given experimental data.

• to distinguish threshold enhancement in single-channel scattering • to determine the pole configuration of a coupled-channel amplitude

• The results of deep learning method can be used to design an amplitude

Acknowledgement

We would like to acknowledge The Mathematical Analysis Unit of the Center for Infectious Disease Education and Research (CiDER), Osaka University for the conference and travel support.

DLBSOMBILLO / 2022.10.31-11.03

