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Weinberg, van Kolck, Kaiser, EGM, …  
Nuclear forces

Park et al, Bochum-Bonn, JLab-Pisa
Nuclear currents

Combined with ab-initio few-body methods, 
provide first-principle approach to nuclear systems 
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Effective Lagrangian:

GB dynamics
Weinberg, Gasser, Leutwyler, …  

πN dynamics
Bernard-Kaiser-Meißner et al. Chiral Perturbation Theory

Q = momenta of particles or Mπ

breakdown scale Λb
~ 1

4

Goal: chiral EFT as a precision tool

…
1
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!Chiral expansion of the nuclear forces [NDA, DimReg]
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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— long-range interactions are parameter-free predictions (all N LECs known)
— all expressions are derived using dimensional regularization of loop integrals 

π



!Regularization
One has to introduce a regulator with Λ ~ Λb. In practice, low values of Λ are preferable:

— many-body methods require soft interactions,
— spurious deeply-bound states for Λ > Λcrit make calculations for A > 3 unfeasible…

it is crucial to employ a regulator that minimizes finite-Λ artifacts!
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Nonlocal:

affect long-range interactions…
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W +

Z
d
3
x

⇣
i[W,R

v

0
(~x)] · ✏V (~x, t) + i[W,R

v

1
(~x)] · ✏̇V (~x, t) + i[W,R

a

0
(~x)] · ✏A(~x, t)

+i[W,R
a

1
(~x)] · ✏̇A(~x, t) + R

v

0
(~x) · ✏̇V (~x, t) + R

v

1
(~x) · ✏̈V (~x, t) + R

a

0
(~x) · ✏̇A(~x, t) + R

a

1
(~x) · ✏̈A(~x, t)

⌘
,

1

Reinert, Krebs, EE ’18;Local:

— Application to 2π exchange does not require re-calculating the corresponding diagrams:

reg.

polynomial 
in q2, Mπ

~k ' 0

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l

(2⇡)3
l2 � q2

!+!�(!+ + !�)

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l1

(2⇡)3
d3l2

(2⇡)3
(2⇡)3�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

V (Q2)
2⇡ (~q ) /

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

=
Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2

[!2
1 + �2][!2

2 + �2]

�!

Z
dµ2

1dµ
2
2

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2 ⇢(µ1) ⇢(µ2)

[(~l21 + �2) + µ2
1][(

~l22 + �2) + µ2
2]

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
!2

+ + 4�2
i h
!2

� + 4�2
i ⇥ . . .

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
(~q +~l)2 + 4M2

⇡
+ 4�2

i h
(~q �~l)2 + 4M2

⇡
+ 4�2

i ⇥ . . .

V (q) =
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
+ . . . �! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 + . . . .

V (Q2)
2⇡ / g2

A

1

— Convention: choose polynomial terms such that                                  

— EM N
3
LO — — EMN N

4
LO

+
— — SMS N

4
LO

+
—

Elab bin ⇤ = 500 ⇤ = 600 ⇤ = 450 ⇤ = 500 ⇤ = 550 ⇤ = 450

neutron-proton scattering data

0 � 100 1.18 1.36 1.29 1.12 1.12 1.07
0 � 200 1.17 1.33 1.33 1.18 1.23 1.06
0 � 300 1.23 1.37 2.48 1.26 1.35 1.10

proton-proton scattering data

0 � 100 1.02 1.35 0.90 1.00 1.17 0.86
0 � 200 1.32 1.60 1.05 1.15 1.43 0.95
0 � 300 1.39 2.07 1.46 1.20 1.40 0.99

Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 Nijm II

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.07

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.11

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.83

0 � 200 MeV 1.28/1.55 1.34/0.97 0.95 0.96

0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.03

Z 1

0
dµ2 ⇢(µ2

)

~l 2 + µ2
�!

1

~l 2 + M2
⇡

e�
~l2+M2

⇡
⇤2

V (q) =
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
�! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M2
⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 .

�
nV⇤, long(~r )

���
r=0

= 0

”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
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while the results for pp channels are:
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R=0.8 fm .

5

does not affect long-range physics at any order in 1/Λ2-expansion 

[inspired by 
Thomas Rijken]
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FIG. 2: (Color online) Ratios W (2)
C,⇤, i(r)/W

(2)
C,1(r) for for di↵erent implementations of the regularization i = 1, . . . , 4 defined in

the text as a function of the relative distance between the nucleons. Dashed-double-dotted light-brown, dashed blue, dashed-
dotted green and solid red lines refer to i = 1, 2, 3 and 4, respectively. The cuto↵ ⇤ is set to be ⇤ = 450 MeV. The dotted
horizontal line corresponds to the unregularized potential, i.e., the ratio is equal to 1, and is drawn to guide the eyes.

2. Next, we follow the opposite approach and retain only the momentum-dependent part of the regulator with-
out introducing spectral-function regularization. The regularized potential is defined by means of the twice
subtracted spectral integral
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Alternatively, one can just multiply W (2)

C,1(q) by the regulator e�
q2

2⇤2 , which leads to a di↵erent admixture of
the contact terms. We found, however, that this definition leads to larger distortions at short distances as the
one in Eq. (2.36).

3. In the third approach, the regularized potential is defined according to Eq. (2.23) but without explicitly sub-
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and the Fourier transform to coordinate space can be performed using the second relation in Eq. (2.36).

4. Finally, the approach to define the regularized potential W (2)
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where the functions C2

C,i
(µ) are determined as described above and given in appendix A.

In Fig. 2, we show the ratios of the potentials W (2)

C,⇤, i
(r), with r = 1, . . . , 4, to the unregularized expression W (2)

C,1(r)
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The newest Bochum NN potentials up to N4LO+ provide a perfect  description of mutually 
consistent NN data up to the pion production threshold Reinert, Krebs, EE, EPJA (18);  PRL 126 (21) 092501
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A representative example: pp scattering observables at Elab = 143 MeV

E. Epelbaum et al. High-precision nuclear forces from chiral EFT
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Figure 6. Selected proton-proton observables around Elab = 143 MeV: Differential cross section d�/d⌦
at Elab = 144.1 MeV with experimental data taken from Ref. [134] and Ref. [141]. The data sets
have been corrected for their estimated norms of 0.988 and 1.001, respectively. Analyzing power P at
Elab = 142 MeV with experimental data taken from Ref. [142]. The data have been floated and multiplied
by an estimated norm of 0.942. Depolarization D, rotation parameter A, polarization transfer coefficient
Dt and spin-correlation parameter Ckp at Elab = 143 MeV with experimental data taken from Refs. [143]
and [144]. The light- (dark-) shaded green, blue and red bands depict the 68% (95%) DoB truncation errors
at N2LO, N3LO and N4LO+, respectively. Open circles show the predictions of the Nijmegen partial-wave
analysis [129].

the spectroscopic LECs. If we now divide the contact LECs obtained in the fit by their expected sizes in
Eq. (46), we consequently should obtain values of unit magnitude. Fig. 7 shows the absolute values of the
LECs at N4LO+ in these natural units for all considered values of the cutoff ⇤ using ⇤b = 650 MeV. As
can be seen, all LECs are indeed of natural size with D1S0 and D3S1 being among the largest in magnitude.
This is especially true for the softest cutoff ⇤ = 400 MeV, for which also most of the other-Q4 LECs turn
out to be slightly larger than at higher values of the cutoff. This indicates that at ⇤ = 400 MeV and below,
finite-cutoff artifacts start to increase, leading to a lower effective breakdown scale compared to the other
considered cutoffs. Notice further that the values for the Q6 LECs Ei included at N4LO+ turn out to be of
a perfectly natural size. Therefore, even though we have emphasized their importance in describing some
high-precision proton-proton data and achieving a �2/datum ⇠ 1 description of the database, their actual
contributions agree with the expectations from naive dimensional analysis (i.e. Weinberg) power counting,
and there is no need to promote them to a lower order.

In addition to the absolute of the central values, Fig. 7 also shows the statistical uncertainties of the
contact LECs as determined from the covariance matrix of the fit (expressed in their natural units). When
going from C̃i, Ci, Di to Ei the statistical relative errors tend to increase. This is in accordance with the
decreasing importance of higher-order contributions as predicted by power counting. One also notices
that errors are smaller for LECs entering isovector partial waves, because these parameters are mainly
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Figure 6. Selected proton-proton observables around Elab = 143 MeV: Differential cross section d�/d⌦
at Elab = 144.1 MeV with experimental data taken from Ref. [134] and Ref. [141]. The data sets
have been corrected for their estimated norms of 0.988 and 1.001, respectively. Analyzing power P at
Elab = 142 MeV with experimental data taken from Ref. [142]. The data have been floated and multiplied
by an estimated norm of 0.942. Depolarization D, rotation parameter A, polarization transfer coefficient
Dt and spin-correlation parameter Ckp at Elab = 143 MeV with experimental data taken from Refs. [143]
and [144]. The light- (dark-) shaded green, blue and red bands depict the 68% (95%) DoB truncation errors
at N2LO, N3LO and N4LO+, respectively. Open circles show the predictions of the Nijmegen partial-wave
analysis [129].

the spectroscopic LECs. If we now divide the contact LECs obtained in the fit by their expected sizes in
Eq. (46), we consequently should obtain values of unit magnitude. Fig. 7 shows the absolute values of the
LECs at N4LO+ in these natural units for all considered values of the cutoff ⇤ using ⇤b = 650 MeV. As
can be seen, all LECs are indeed of natural size with D1S0 and D3S1 being among the largest in magnitude.
This is especially true for the softest cutoff ⇤ = 400 MeV, for which also most of the other-Q4 LECs turn
out to be slightly larger than at higher values of the cutoff. This indicates that at ⇤ = 400 MeV and below,
finite-cutoff artifacts start to increase, leading to a lower effective breakdown scale compared to the other
considered cutoffs. Notice further that the values for the Q6 LECs Ei included at N4LO+ turn out to be of
a perfectly natural size. Therefore, even though we have emphasized their importance in describing some
high-precision proton-proton data and achieving a �2/datum ⇠ 1 description of the database, their actual
contributions agree with the expectations from naive dimensional analysis (i.e. Weinberg) power counting,
and there is no need to promote them to a lower order.

In addition to the absolute of the central values, Fig. 7 also shows the statistical uncertainties of the
contact LECs as determined from the covariance matrix of the fit (expressed in their natural units). When
going from C̃i, Ci, Di to Ei the statistical relative errors tend to increase. This is in accordance with the
decreasing importance of higher-order contributions as predicted by power counting. One also notices
that errors are smaller for LECs entering isovector partial waves, because these parameters are mainly

22

N2LO: = 68%, = 95%

N3LO: = 68%, = 95%
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Λ = 450 MeV



!Residual regulator dependence
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Few-nucleon systems at N2LO

The leading contribution to the 3NF (Q3, N2LO):
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FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
LlL0l0 (p, q, p0, q0) =

Z
dp̂0

dq̂0
dp̂dq̂

⇥Y
⇤
L0mL0 (p̂

0)Y ⇤
l0ml0

(q̂0)YLmL(p̂)Ylml(q̂)V
loc
123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result

cD cE
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the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral
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FIG. 3. (Color online) Results for the di↵erential cross
section, nucleon and deuteron analyzing powers A

n
y and A

d
y as

well as deuteron tensor analyzing powers Ayy, Axz and Axx

in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄

650
0.5�10. Open circles are proton-deuteron

data from Ref. [47].

We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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FIG. 3. (Color online) Results for the di↵erential cross
section, nucleon and deuteron analyzing powers A

n
y and A
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y as

well as deuteron tensor analyzing powers Ayy, Axz and Axx

in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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data from Ref. [47].

We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve

Tensor analyzing powers in Nd elastic scattering at 70 MeV

Predictions for ground-state energies of light nuclei

Excitation energies 17

FIG. 12. (Color online) Prior pdf for the variance c̄
2 of the

expansion coe�cient with several choices of hyperparameters
⌫0 and ⌧0.

observable kinetic energy in estimating Q is discussed in
Ref. [16]). To fit the empirical covariance matrix, it is not
su�cient to use the c3 results. As a start, we also include
c2 for determining the covariance, which might overesti-
mate the degree of correlation based on a comparison of
orders in Fig. 11. Other strategies for determining corre-
lations for energy spectra will be explored in future work.

The resulting Bayesian 95% confidence intervals for
the excitation energies are shown in Fig. 13, where we
plot the ratio of theory to experiment. The intervals
are shown for the results from Tables III and IV for
both the ⇤ = 450MeV (upper, blue) and ⇤ = 500MeV
(lower, red) potentials at SRG ↵ = 0.08 fm4. The trunca-
tion uncertainties are particularly large for very low-lying
excitations in this representation because of the small
numbers involved. We see that the uncertainties for the
500 MeV potential are systematically larger than those
for 450MeV potential, but in both cases the empirical
coverage of experiment is good. That is, the error bars
encompass unity at roughly the rate one would expect
for 95% intervals. We emphasize that without taking
correlations into account, the intervals would have been
significantly larger, and therefore would have been too
conservative based on this comparison (i.e., with poor
empirical coverage).

When N3LO results are available, we will be able to
validate these results and explore the covariance struc-
ture in greater detail. It will be interesting to analyze the
correlations among states with similar and distinct char-
acteristics as expected from theoretical considerations.
We will also seek to make use of the lower-order results
along the lines discussed in Ref. [16] as alternative ap-
proaches to the truncation errors.

FIG. 13. (Color online) Central values (dots) for the ex-
citation energies from Tables III and IV with 95% Bayesian
confidence intervals for truncation errors only indicated as er-
ror bars. (We omit the 0+ in 8Li because an experimental
value is not available and the lowest 2+ in 12B because the
experimental ground state is not correctly predicted.) For
each excitation from the calculated ground state, the upper
(blue) bar is for ⇤ = 450 MeV and the lower (red) bar is for
⇤ = 500 MeV. All results shown are for ↵ = 0.08 fm4.

VII. SUMMARY AND CONCLUSIONS

In this paper we have, for the first time, applied the
novel SMS chiral NN potentials of Ref. [32], along with

Λ = 450 MeV
Λ = 500 MeV

LENPIC
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the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral
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of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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FIG. 3. (Color online) Results for the di↵erential cross
section, nucleon and deuteron analyzing powers A
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y and A
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well as deuteron tensor analyzing powers Ayy, Axz and Axx

in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄

650
0.5�10. Open circles are proton-deuteron

data from Ref. [47].

We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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section, nucleon and deuteron analyzing powers A
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in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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data from Ref. [47].

We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve
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in elastic nucleon-deuteron scattering at laboratory energy
of EN = 70 MeV at NLO (yellow bands) and N2LO (green
bands) for ⇤ = 450 MeV. Dotted lines show the N2LO results
based on the SMS NN forces from Ref. [32] accompanied with
the unsubtracted (i.e. with C(M⇡) = 0) 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the
SCS (NN+3NF) interactions from Ref. [31]. The light (dark)
shaded bands indicate 95% (68%) DoB intervals using the
Bayesian model C̄
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data from Ref. [47].

We have also calculated selected breakup observables
at EN = 65 MeV, for which experimental data are avail-
able. In Fig. 4, we show the five-fold di↵erential cross sec-
tion and nucleon vector analyzing power Ay as functions
of the kinematical locus variable S for selected configu-
rations specified by the detection angles ✓1, ✓2 and �12 in
the laboratory system; see Ref. [52] for the definition of
kinematical variables, which may serve as representative
examples.

One observes a similar picture as for the considered
elastic scattering observables. In particular, the exper-
imental data are well reproduced, and our N2LO re-
sults agree well with those obtained both using the SCS
(NN+3NF) interactions and the SMS forces with unsub-
tracted 3NF. Furthermore, our N2LO results for the dif-
ferential cross sections in Fig. 3 agree well with the pre-
dictions based on the CD Bonn potential, see Fig. 6 of
Ref. [58]. This should not come as a surprise since 3NF
e↵ects appear to be fairly small for the considered cases.
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FIG. 4. (Color online) Results for the di↵erential cross
section, (a)-(d), and nucleon vector analyzing power Ay as
functions of the kinematical locus variable S for the deuteron
breakup reaction at laboratory energy of EN = 65 MeV
at NLO (yellow bands) and N2LO (green bands) for ⇤ =
450 MeV. Proton-deuteron data for (a), (c), (f) are taken
from Ref. [56] while those shown in (b), (d) and (e) are from
Ref. [57]. For remaining notation see Fig. 3.

Notice, however, that relativistic corrections turn out to
be non-negligible for the cross section in the panels (b)
and (d). In Ref. [58], they were found to decrease the
predictions for the di↵erential cross section around the
maximum by almost 10%. In chiral EFT, relativistic cor-
rections to the Nd scattering amplitude need to be taken
into account starting from N3LO. Their expected size is,
therefore, in qualitative agreement with the estimated
size of the neglected N3LO contributions as reflected by
the width of the green uncertainty bands. Last but not
least, we have also calculated breakup configurations con-
sidered in Ref. [59], which feature more pronounced 3NF
e↵ects. In all considered cases (not shown here), we found
similar results to the ones based on high-precision phe-
nomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61]
3NF models.

IV. A=3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground state energies and excitation
spectra up to the p-shell. In this section, we focus on
the A = 3 and A = 4 bound states, for which we solve

Tensor analyzing powers in Nd elastic scattering at 70 MeV

Predictions for ground-state energies of light nuclei
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FIG. 12. (Color online) Prior pdf for the variance c̄
2 of the

expansion coe�cient with several choices of hyperparameters
⌫0 and ⌧0.

observable kinetic energy in estimating Q is discussed in
Ref. [16]). To fit the empirical covariance matrix, it is not
su�cient to use the c3 results. As a start, we also include
c2 for determining the covariance, which might overesti-
mate the degree of correlation based on a comparison of
orders in Fig. 11. Other strategies for determining corre-
lations for energy spectra will be explored in future work.

The resulting Bayesian 95% confidence intervals for
the excitation energies are shown in Fig. 13, where we
plot the ratio of theory to experiment. The intervals
are shown for the results from Tables III and IV for
both the ⇤ = 450MeV (upper, blue) and ⇤ = 500MeV
(lower, red) potentials at SRG ↵ = 0.08 fm4. The trunca-
tion uncertainties are particularly large for very low-lying
excitations in this representation because of the small
numbers involved. We see that the uncertainties for the
500 MeV potential are systematically larger than those
for 450MeV potential, but in both cases the empirical
coverage of experiment is good. That is, the error bars
encompass unity at roughly the rate one would expect
for 95% intervals. We emphasize that without taking
correlations into account, the intervals would have been
significantly larger, and therefore would have been too
conservative based on this comparison (i.e., with poor
empirical coverage).

When N3LO results are available, we will be able to
validate these results and explore the covariance struc-
ture in greater detail. It will be interesting to analyze the
correlations among states with similar and distinct char-
acteristics as expected from theoretical considerations.
We will also seek to make use of the lower-order results
along the lines discussed in Ref. [16] as alternative ap-
proaches to the truncation errors.

FIG. 13. (Color online) Central values (dots) for the ex-
citation energies from Tables III and IV with 95% Bayesian
confidence intervals for truncation errors only indicated as er-
ror bars. (We omit the 0+ in 8Li because an experimental
value is not available and the lowest 2+ in 12B because the
experimental ground state is not correctly predicted.) For
each excitation from the calculated ground state, the upper
(blue) bar is for ⇤ = 450 MeV and the lower (red) bar is for
⇤ = 500 MeV. All results shown are for ↵ = 0.08 fm4.

VII. SUMMARY AND CONCLUSIONS

In this paper we have, for the first time, applied the
novel SMS chiral NN potentials of Ref. [32], along with
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FIG. 12. (Color online) Ground-state energies and point-proton radii for even oxygen isotopes obtained in the IM-NCSM
with SMS interactions from N2LO to N4LO+ with ⇤ = 450 MeV (left-hand panels) and ⇤ = 500 MeV (right-hand panels) for
flow-parameter ↵ = 0.08 fm4. The error bands show the chiral truncation uncertainties at the 95% confidence level obtained
with the Bayesian model for N2LO and N4LO+.

for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
servables on Nmax, N ref

max, and the IM-SRG flow param-
eter. As for most ground-state calculations a variation
of the N

ref
max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
servables on Nmax, N ref

max, and the IM-SRG flow param-
eter. As for most ground-state calculations a variation
of the N
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max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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for the final NCSM calculation. We have confirmed in
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to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
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of the N

ref
max truncation parameter has the largest im-
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between N
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tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
servables on Nmax, N ref

max, and the IM-SRG flow param-
eter. As for most ground-state calculations a variation
of the N

ref
max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
servables on Nmax, N ref

max, and the IM-SRG flow param-
eter. As for most ground-state calculations a variation
of the N

ref
max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-
servables on Nmax, N ref

max, and the IM-SRG flow param-
eter. As for most ground-state calculations a variation
of the N

ref
max truncation parameter has the largest im-

pact on the observables. Therefore, we use the di↵erence
between N

ref
max = 0 and 2 to assess the many-body uncer-

tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cuto↵s we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cuto↵s shown in the upper panels
of Fig. 12. As expected, the LO interaction does not

provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at
N2LO again show a sizable overbinding and deviate from
the general systematics. A similar e↵ect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the di↵erent chiral orders and the two cuto↵s. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the di↵erent orders
and the two cuto↵ values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.
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!Precision determinations of charge radii of light nuclei

The charge radii are defined as a slope of the 
charge form factor GC:
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Electroweak probes on nucleons and nuclei can be described by current formalism

JB0ψλ ψλ’

isoscalar charge density 
available to N4LO (3 LECs)

r2
C = (−6)

∂GC(Q2)
∂Q2

Q2=0

What we calculate in the structure radius, which 
incorporates all nuclear effects: 

Precision measurements of charge radii for A = 1, 2, 3, 4 nuclei

3He 4He

3H2H1H

Pohl:2013yb, 

CREMA:2016idx, 

Pohl:2016glp, 

Schmidt:2018kjc,

Krauth:2021foz

...

Number of neutrons

N
um

be
r o

f p
ro

to
ns

r = 1.6782(8)fm

Antognini et al. 2013 CREMA 2016

μp+iso.shift

TREX Mainz

[in progress]

Krauth et al. 2021[Preliminary]

R. Pohl 2022

r = 1.7550(860)fm

r = 1.7xxx( 2)fm

Amroun et al. 1994

rp = 0.8409(4)fm

r = 1.9687(13)fm

rd = 2.1277(2)fm

Pachucki et al. 2018 
Jentschura et al. 2011

(r2
d − r2

p) = 3.82070(31)fm2
Data from isotope shift

Motivation:

— precision tests of chiral EFT

— new source of information on rp, rn
     (provided nuclear effects under control)

+ (r2
p +

3
4m2

p
) +

A − Z
Z

r2
nr2

C = r2
str

— underpredicted radii for medium-
     mass nuclei found by LENPIC
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via

G
scaled

C
(Q) = GC(Q)

 
3X

i=0

ai exp(�biQ
2)

!�1

, (63)
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via

G
scaled

C
(Q) = GC(Q)

 
3X

i=0

ai exp(�biQ
2)

!�1

, (63)

The charge and quadrupole form factors of the deuteron at N4LO

Filin et al., PRL 124 (2020)
Filin et al., PRC 103 (2021)

The extracted structure radius
and quadrupole moment:

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501;  PRC 103 (2021) 024313

statistical and systematic errors due to 
the EFT truncation, choice of fitting range 

and N LECsπ

rstr = 1.9729+0.0015
−0.0012 fm

Qd = 0.2854+0.0038
−0.0017 fm

2

The value of  is to be compared with  Qd Qexp
d = 0.285 699(15)(18) fm2 Puchalski et al., PRL 125 (2020)

Λ = 500 MeV
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].
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long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].
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The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢
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from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via

G
scaled

C
(Q) = GC(Q)
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via
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electric dipole moment by DDDD = 4πε0αnEEEE. For a review, see SCHMIED-
MAYER 89.

For very complete reviews of the polarizability of the nucleon and Compton
scattering, see SCHUMACHER 05 and GRIESSHAMMER 12.

VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT

11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE

11.55± 1.25±0.8 MYERS 14 CNTR γd → γd

12.5 ± 1.8 +1.6
−1.3

1 KOSSERT 03 CNTR γd → γpn

12.0 ± 1.5 ±2.0 SCHMIEDM... 91 CNTR n Pb transmission

10.7 + 3.3
−10.7 ROSE 90B CNTR γd → γnp

HTTP://PDG.LBL.GOV Page 6 Created: 6/5/2018 19:00

Combining our result for    with the 

1H-2H isotope shift datum    leads 
to the prediction for the neutron radius:

r2
str = r2

d − r2
p − r2

n −
3

4m2
p

r2
d − r2

p = 3.82070(31) fm2

r2
n = − 0.105+0.005

−0.006 fm2

our result

The value of  is to be compared with  Qd Qexp
d = 0.285 699(15)(18) fm2 Puchalski et al., PRL 125 (2020)

Λ = 500 MeV

Atac et al., Nature Commun. 12 (21)

Haecock et al., Science 373 (21)



!A = 3,4 nuclei (preliminary)

2 out of 3 LECs in the short-range 2N charge density already 
fixed from the 2H FFs;  the remaining one is determined from 
the 4He FF
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Charge radius of 4He
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Parameter-free prediction of the iso-scalar 3N charge radius 

rC(3Nisoscalar) ≡ 1/3 r2
C(3H) + 2/3 r2

C(3He) = (1.9058 ± 0.0026) fm

preliminary, using CODATA-2018 rp and own determination of rn

Experimental value:     (limited by the 3H value)rexp
C (3Nisoscalar) = (1.903 ± 0.029) fm

Amroun et al. ’94 (world average e— on 3H);  Pohl ’22 (μ3He)



!A = 3,4 nuclei (preliminary)

2 out of 3 LECs in the short-range 2N charge density already 
fixed from the 2H FFs;  the remaining one is determined from 
the 4He FF

� � � � ������

�����
�����

�����
�����

�����
�

� (	
-�)

|�
�
�
��
�
(�

� )
|/
�

�

��� ��� ��� ��� ���
����

���

����

����

����

� (	
-�)

� �
�
��
�
(�

� )
/�
�
�
��
�
(�

� )
��

	 �

preliminary

using CODATA rp and own determination of rn

⇒ rC(4He) = 1.6798 ± 0.0035 fm

Experimental value (μ4He):   rexp
C (4He) = (1.67824 ± 0.00083) fm Krauth et al., Nature 589 (2021) 7843, 527-531

Charge radius of 4He

Parameter-free prediction of the iso-scalar 3N charge radius 

rC(3Nisoscalar) ≡ 1/3 r2
C(3H) + 2/3 r2

C(3He) = (1.9058 ± 0.0026) fm

preliminary, using CODATA-2018 rp and own determination of rn

Experimental value:     (limited by the 3H value)rexp
C (3Nisoscalar) = (1.903 ± 0.029) fm

Amroun et al. ’94 (world average e— on 3H);  Pohl ’22 (μ3He)

MEC contribution increases from ~0.3% for 2H to ~3% for 4He! Heavier nuclei in progress…
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Towards solution of the 3NF challenge

High-precision NN potentials  describe NN data with V2N χ2 /datum ∼ 1

No Hamiltonian  exists that can describe Nd data, e.g.:H = Hkin + V2N + V3N

6 Comments on the �2 values in the three-nucleon sector

Alejandro Kievsky1

1 – Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100 Pisa, Italy

In recent years a substantial progress has been achieved in the development of accurate descriptions of
the interaction between nucleons using the systematic framework provided by chiral perturbation theory.
In the nucleon-nucleon (NN ) sector, potentials obtained up to 4th and 5th order in the nuclear EFT
expansion have provided an extremely accurate description of the NN world data with a value of �2

per datum close to one. Most of the data that these potentials describe are proton-proton and neutron-
proton scattering cross-sections and analyzing powers. The same class of data exist in other sectors, as
the three-nucleon (3N ) or four-nucleon scattering (4N ). Focusing in the 3N system, it is a fact that
all realistic NN potentials describe poorly some of these observables. In particular, vector and tensor
analyzing powers in proton-deuteron scattering are underpredicted by almost all those NN potentials
even if they are supplemented by a 3N force. However at present the NN and 3N interactions are
considered at di�erent orders. As example, in table 6.1, we show the �2 per datum obtained after solving
proton-deuteron scattering at low energies [1, 2]. Two di�erent interactions are considered, the widely
used Argonne V18 interaction (AV18), without and with the inclusion of the Urbana IX (UR) 3N force,
and the chiral based interaction by Entem and Machleidt (Idaho-N3LO), with and without the inclusion
of the 3N force at NNLO. The strength of this force depends on two low-energy constants (LECs) that
have been determined by fixing the triton binding energy and the doublet neutron-deuteron scattering
length. In all the cases examined the �2 per datum of the analyzing powers could exceed the value of one
hundred, in particular the vector analyzing powers Ay and iT11. The tensor analyzing powers are slightly
better described, however the �2 value of T21 is very high in some cases.

Table 6.1: �2 per datum obtained in the description of the proton-deuteron vector and tensor analyzing powers

Energy potential Ay iT11 T20 T21 T22

1 MeV AV18 276 112 3.5 4.5 2.8
AV18+UR 190 61 1.0 2.5 0.7
Idaho-N3LO 197 68.7 4.0 2.5 1.5
N3LO+N2LO 139.9 49.5 2.7 2.5 0.9

3 MeV AV18 313 205 4.8 6.7 12
AV18+UR 271 144 5.4 11 2.4
N3LO 186 108.3 1.9 2.8 4.4
N3LO+N2LO 114 85.8 3.6 8.3 1.6

5 MeV AV18 211 99 6.8 12 7.8
AV18+UR 186 59 26 36 1.5

7 MeV AV18 303 90 19 38 1.9
AV18+UR 239 56 40 81 4.2

9 MeV AV18 292 165 42 70 38
AV18+UR 218 134 63 86 7.2

10 MeV AV18 288 29 10 6.2 24
AV18+UR 224 23 13 6.1 7.6

These results suggest that the complicated structure of the 3N force has to be further analysed. Recently,
the contact three-nucleon interaction at N4LO has been worked out showing that there are thirteen new
LECs to be determined. Moreover, the spin structure is su�ciently flexible to guarantee a better de-
scription of the polarization observables at low energies. The results of Ref. [3] show that using the
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Alejandro Kievsky, in Tews et al., FBS 63 (22) 4, 67



!3N scattering in chiral EFT

   precise description of 3N data will likely require pushing chiral EFT for the 3NF to N4LO⇒

Challenges to be addressed:

4 E. Epelbaum et al.: Towards high-order calculations of three-nucleon scattering in chiral e↵ective field theory
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Fig. 1. Estimated theoretical uncertainty for the chiral EFT
results for np di↵erential cross section d�/d⌦ (left panel) and
polarization transfer coe�cient Dt at laboratory energy of
Elab = 143 MeV. The light- (dark-) shaded yellow, green, blue
and red bands of decreasing width depict 95% (68%) DoB in-
tervals at NLO, N2LO, N3LO and N4LO, respectively. Dashed
lines show the LO predictions. Open circles refer to the re-
sults of the Nijmegen partial wave analysis [53]. Data for the
cross section are at Elab = 142.8MeV and taken from [54].
The first, second, third and fourth rows correspond to the
Bayesian models C650

0.5�10, C̃
650
0.5�10, C̄

650
0.5�10 and C700

✏ . All re-
sults shown are based on the SMS NN potentials using the
cuto↵ of ⇤ = 450 MeV.

regions, the authors of Ref. [41] suggested to use a more
informative (but not too restrictive) prior set C0.25�10 cor-
responding to c̄< = 0.25 and c̄> = 10. Here and in what
follows, we make the choice c̄< = 0.5, which we found
to be more e�cient in resolving the above mentioned is-
sue while still su�ciently general. As shown in the upper
row of Figs. 1 and 2, the prior set C650

0.5�10 indeed yields
reasonable estimates of the truncation errors for d�/d⌦.
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Fig. 2. Same as Fig. 1 but for the spin-correlation parameters
Ckp and Ckk.

However, the more informative prior with c̄< 6= 0 suf-
fers from another issue as it yields a vanishingly small
truncation error at all orders in the cases when X(0) hap-
pens to be accidentally small. This is the case for Dt at
✓CM ⇠ 100� and for Ckk at ✓CM ⇠ 10�, ✓CM ⇠ 75� and
✓CM ⇠ 180�, see the plots in the upper row of Figs. 1 and
2. The most extreme situation is observed for the coe�-
cient Ckp, for which the LO contribution appears to be
small for all scattering angles. The problem can be traced
back to the misidentification of the overall scale by Eq. (3)
in such accidental cases. Writing X(0) as X(0) = ↵X̃(0)

with ↵ ! 0 being a dimensionless parameter, one finds
�k ⇠ ↵�1 for the prior set C✏ while �k ⇠ ↵0 leading
to �X(k) = ↵X̃(0)�k ⇠ ↵ for the prior set Cc̄<�c̄> with
c̄> < 1. The problem can be easily fixed by replacing
Eq. (3) with Eq. (4) as shown in the second row of Figs. 1
and 2. Here and in what follows, the resulting Bayesian
model is referred to as C̃. However, while highly unlikely,
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Fig. 6. Predictions for the di↵erential cross section, nucleon
and deuteron analyzing powers An

y and Ad
y as well as deuteron

tensor analyzing powers Ayy, Axz and Axx in elastic nucleon-
deuteron scattering at laboratory energy of EN

lab = 135 MeV
at NLO (yellow bands) and N2LO (green bands) based on the
SMS NN potentials of Ref. [7] for ⇤ = 500 MeV. Open cir-
cles are proton-deuteron data from Ref. [62]. For remaining
notation see Fig. 4.

from N2LO due to the missing 3NF, they have demon-
strated that the expected accuracy of chiral EFT at high
orders such as N4LO should be substantially smaller than
the observed discrepancies between state-of-the-art calcu-
lations and experimental data. Fig. 8 shows an update
of these finding by using the new SMS NN potentials
of Ref. [7], including the 3NF at N2LO and replacing
the EKM approach to estimating truncation errors by
the Bayesian model C̄650

0.5�10. Specifically, the incomplete
N3LO and N4LO results shown in this figure are based on
the N3LO and N4LO+ NN potentials accompanied with
the N2LO 3NF with the LECs cD and cE being read-
justed to the 3H binding energy and the di↵erential cross
section at EN

lab = 70 MeV in exactly the same way as
done at N2LO. In the 3NF, we have used the values of
the LECs ci from Ref. [12] consistent with the NN inter-
actions at the corresponding chiral order, namely c1 =
�1.07 GeV�1, c3 = �5.32 GeV�1 and c4 = 3.56 GeV�1

at N3LO and c1 = �1.10 GeV�1, c3 = �5.54 GeV�1 and
c4 = 4.17 GeV�1 at N4LO, subject to the additional shifts
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Fig. 7. Predictions for polarization transfer coe�cients Ky
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yy and the induced polarization P y

in elastic nucleon-deuteron scattering at laboratory energy of
EN

lab = 135 MeV at NLO (yellow bands) and N2LO (green
bands) based on the SMS NN potentials of Ref. [7] for ⇤ =
500 MeV. Open circles are proton-deuteron data from Ref. [63].
For remaining notation see Fig. 4.

of

�c1 = � g2AM⇡

64⇡F 2
⇡

' �0.13 GeV�1 ,

�c3 = ��c4 =
g4AM⇡

16⇡F 2
⇡

' 0.86 GeV�1 , (18)

generated by the pion loop contributions to the 3NF at
N3LO [17]. Since we do not have complete results be-
yond N2LO, the error bands in Fig. 8 are obtained by
just rescaling the corresponding 68% and 95% N2LO DoB
intervals. The incomplete N3LO and N4LO+ results may,
of course, still be regarded as complete N2LO predictions.
At EN

lab = 200 MeV, the N3LO uncertainty bands are still
quite sizable indicating that the N4LO contributions to
the 3NF could play a significant role. Thus, fully in line
with the findings of Ref. [39,40], our results suggest that
the accurate description of Nd scattering data below pion
production threshold will likely require the chiral expan-
sion of the 3NF to be pushed to N4LO. Notice that the
accurate and precise description of neutron-proton and
proton-proton data below pion production threshold also
required the chiral expansion of the NN force to be pushed
to N4LO (or even N4LO+) [7].

2N scattering 3N scattering

NLO, 68%
N2LO, 68%
N3LO, 68%
N4LO, 68%

— Conceptual: Consistent regularization of the 3NF beyond N2LO

— Computational: Determination of  LECs in the 3NF at N4LO≳ 15
[CPU time]3N amplitude  ~ 107  [CPU time]2N amplitude ⋅

EN = 143 MeV EN = 135 MeV
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Epelbaum Part B2 NUCLEARTHEORY

yet-to-be-derived 1⇡-contact 3NF at N4LO involves at least one unknown LEC while the contact 3NF
at this order consists of 10 independent terms [62], 9 from which contribute to isospin-1/2 channels
probed in Nd scattering.4 These contact terms contribute, in particular, to Nd P-waves, whose correct
description is important for reproducing polarization observables such as Ay [96]. Our exploratory
study [57] shows, that such 3NF terms can potentially resolve the Ay puzzle, see also [104], and the
observed discrepancies for spin observables at intermediate and high energies.

Even with the help of the systematic framework of chiral EFT, carrying out a PWA of the 3N contin-
uum will require going far beyond the state-of-the-art and developing and employing unconven-
tional methodologies, see sections b.ii. and b.iv., in order to address the two major challenges:

Challenge 1: On the theoretical/conceptual side, the
challenge is to derive regularized 3NF and cur-
rents consistent with the NN interactions – the
currently unsolved problem at N3LO and be-
yond [6]. To illustrate the problem consider the 3N
on-shell scattering amplitude from the Feynman graph
in the l.h.s. of Fig. 5. Consistency between the 2NF
and 3NF (shown by gray-shaded rectangles) means,
that the same amplitude is generated by iterating the

Feynman diagram

V2N  G0 V3N
1π 2π V3N

2π-1π

Iterations of the Faddeev equation

Figure 5: The on-shell amplitude from
the 1⇡-2⇡ Feynman graph represented in
terms of iterations of the Faddeev equation.

Faddeev equation in the r.h.s.. In [6] we demonstrate that using DR for all shown diagrams (including
the iteration of the Faddeev equation V 1⇡

2N G0 V 2⇡
3N ) yields, as expected, consistent results. In con-

trast, following the common practice [56, 105–107] by introducing a cuto↵ regularization to tame the
singularities emerging from iterations of the LS/Faddeev equations on top of DR used to derive the
3NF leads to incorrect results due to the appearance of uncontrolled short-range artifacts that vio-
late chiral symmetry (not suppressed by inverse powers of ⇤)5. While this issue is not relevant for
NN interactions (apart from their mq-dependence), it does also a↵ect current operators starting from
N3LO [108]. To solve this problem, we will merge chiral EFT with the invariant higher derivative
regularization [109] and develop a new path-integral-based method to derive regularized
3NF, 4NF and electroweak currents up through N4LO consistent with the NN forces of
[45] while maintaining the chiral and gauge symmetries, see section b.ii. for details.

Challenge 2: Conducting a PWA of Nd data requires performing a nonlinear least-squares analysis to
determine 2 LECs in the 3NF at N2LO and 10 (or more) at N4LO. The significant cost of solving
the Faddeev equations6 and the lack of information about phase shifts and inelasticities
to be used for pre-fitting the LECs as done in the NN sector [45, 47, 86] pose a major
computational challenge. It will be addressed by using a new breakthrough method based
on eigenvector continuation to drastically speed up sampling the LECs in the 3NF, see
sec. b.iv. for a successful proof of principle in the 2N sector. An alternative approach is to emulate
Nd scattering using renormalized perturbation theory, see b.v., in combination with Bayesian methods
[111, 112] to restrict the parameter space. Further details on solving the 3N problem are given in b.iii..

These studies will (i) shed light onto the long-standing puzzles in Nd scattering (theory defi-
ciency vs. inconsistent data) and (ii) develop high-precision 3NFs. The resulting state-of-the-art
Hamiltonian, complete to N4LO, would provide a high-precision description of 2N and three-nucleon
scattering data. It will be used in WP2, WP3 and made available to the community.

a.ii. WP2: Nuclear forces from matching to lattice QCD
a.ii.1. State-of-the-art

Several lattice QCD groups have studied the NN system and light nuclei at unphysically heavy pion
masses up to M⇡ ⇠ 1 GeV yielding controversial results: while the NPLQCD and PACS Collaborations
find a stronger attraction in both S-wave NN channels leading to a bound dineutron and a stronger
bound deuteron at heavier M⇡ [113–116], see Fig. 6, the opposite is claimed by the HAL QCD group [41,
117, 118], which points towards underestimated systematics, see [119, 120] for a discussion. Scattering

4
The remaining isospin-3/2 contact interaction will have to be determined from 4N scattering or nuclei with A � 4.

5
The regularization issue was independently raised by David Kaplan, who proposed to apply gradient flow [110].

6
Our codes for computing the 2N and 3N scattering amplitude at one energy require ⇠ 10

�3
s and ⇠ 10

4
s CPU time.

6
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Calculate the iterative diagram on the r.h.s. using cutoff regularization:

V1π
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g4
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96 2π3F6
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4
3
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π
+ …
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yet-to-be-derived 1⇡-contact 3NF at N4LO involves at least one unknown LEC while the contact 3NF
at this order consists of 10 independent terms [62], 9 from which contribute to isospin-1/2 channels
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Figure 5: The on-shell amplitude from
the 1⇡-2⇡ Feynman graph represented in
terms of iterations of the Faddeev equation.
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the iteration of the Faddeev equation V 1⇡
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3N ) yields, as expected, consistent results. In con-
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singularities emerging from iterations of the LS/Faddeev equations on top of DR used to derive the
3NF leads to incorrect results due to the appearance of uncontrolled short-range artifacts that vio-
late chiral symmetry (not suppressed by inverse powers of ⇤)5. While this issue is not relevant for
NN interactions (apart from their mq-dependence), it does also a↵ect current operators starting from
N3LO [108]. To solve this problem, we will merge chiral EFT with the invariant higher derivative
regularization [109] and develop a new path-integral-based method to derive regularized
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!3NF: the need for consistent regularization
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yet-to-be-derived 1⇡-contact 3NF at N4LO involves at least one unknown LEC while the contact 3NF
at this order consists of 10 independent terms [62], 9 from which contribute to isospin-1/2 channels
probed in Nd scattering.4 These contact terms contribute, in particular, to Nd P-waves, whose correct
description is important for reproducing polarization observables such as Ay [96]. Our exploratory
study [57] shows, that such 3NF terms can potentially resolve the Ay puzzle, see also [104], and the
observed discrepancies for spin observables at intermediate and high energies.

Even with the help of the systematic framework of chiral EFT, carrying out a PWA of the 3N contin-
uum will require going far beyond the state-of-the-art and developing and employing unconven-
tional methodologies, see sections b.ii. and b.iv., in order to address the two major challenges:

Challenge 1: On the theoretical/conceptual side, the
challenge is to derive regularized 3NF and cur-
rents consistent with the NN interactions – the
currently unsolved problem at N3LO and be-
yond [6]. To illustrate the problem consider the 3N
on-shell scattering amplitude from the Feynman graph
in the l.h.s. of Fig. 5. Consistency between the 2NF
and 3NF (shown by gray-shaded rectangles) means,
that the same amplitude is generated by iterating the

Feynman diagram
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Figure 5: The on-shell amplitude from
the 1⇡-2⇡ Feynman graph represented in
terms of iterations of the Faddeev equation.

Faddeev equation in the r.h.s.. In [6] we demonstrate that using DR for all shown diagrams (including
the iteration of the Faddeev equation V 1⇡

2N G0 V 2⇡
3N ) yields, as expected, consistent results. In con-

trast, following the common practice [56, 105–107] by introducing a cuto↵ regularization to tame the
singularities emerging from iterations of the LS/Faddeev equations on top of DR used to derive the
3NF leads to incorrect results due to the appearance of uncontrolled short-range artifacts that vio-
late chiral symmetry (not suppressed by inverse powers of ⇤)5. While this issue is not relevant for
NN interactions (apart from their mq-dependence), it does also a↵ect current operators starting from
N3LO [108]. To solve this problem, we will merge chiral EFT with the invariant higher derivative
regularization [109] and develop a new path-integral-based method to derive regularized
3NF, 4NF and electroweak currents up through N4LO consistent with the NN forces of
[45] while maintaining the chiral and gauge symmetries, see section b.ii. for details.

Challenge 2: Conducting a PWA of Nd data requires performing a nonlinear least-squares analysis to
determine 2 LECs in the 3NF at N2LO and 10 (or more) at N4LO. The significant cost of solving
the Faddeev equations6 and the lack of information about phase shifts and inelasticities
to be used for pre-fitting the LECs as done in the NN sector [45, 47, 86] pose a major
computational challenge. It will be addressed by using a new breakthrough method based
on eigenvector continuation to drastically speed up sampling the LECs in the 3NF, see
sec. b.iv. for a successful proof of principle in the 2N sector. An alternative approach is to emulate
Nd scattering using renormalized perturbation theory, see b.v., in combination with Bayesian methods
[111, 112] to restrict the parameter space. Further details on solving the 3N problem are given in b.iii..

These studies will (i) shed light onto the long-standing puzzles in Nd scattering (theory defi-
ciency vs. inconsistent data) and (ii) develop high-precision 3NFs. The resulting state-of-the-art
Hamiltonian, complete to N4LO, would provide a high-precision description of 2N and three-nucleon
scattering data. It will be used in WP2, WP3 and made available to the community.

a.ii. WP2: Nuclear forces from matching to lattice QCD
a.ii.1. State-of-the-art

Several lattice QCD groups have studied the NN system and light nuclei at unphysically heavy pion
masses up to M⇡ ⇠ 1 GeV yielding controversial results: while the NPLQCD and PACS Collaborations
find a stronger attraction in both S-wave NN channels leading to a bound dineutron and a stronger
bound deuteron at heavier M⇡ [113–116], see Fig. 6, the opposite is claimed by the HAL QCD group [41,
117, 118], which points towards underestimated systematics, see [119, 120] for a discussion. Scattering
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Nuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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!Example: gradient flow reg. of the 4NF

Consider e.g. the contribution to the 4NF at N3LO involving a 4π-vertex:

10

FIG. 5: Class-II contributions to the 4NF. For notation, see Figs. 1 and 2.

and pion-nucleon interactions H04 and H23, respectively. Using Eqs. (2.14)-(2.17) one obtains the following
contributions to the class-II effective Hamilton operator:
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Similar to the previously considered class-I contributions, we employ additional η-space unitary transformations
with the operator S in Eq. (3.24) given by S = α3S3 + α4S4 + α5S5 where αi are real constants and

S3 = η

[

H1
21

λ1

E2
π
H2

22
λ1

Eπ
H1

21 −H1
21

λ1

Eπ
H2

22
λ1

E2
π
H1

21

]

η ,

S4 = η

[

H2
22

λ2

E2
π
H1

21
λ1

Eπ
H1

21 −H1
21

λ1

Eπ
H1

21
λ2

E2
π
H2

22

]

η ,

S5 = η

[

H2
22

λ2

Eπ
H1

21
λ1

E2
π
H1

21 −H1
21

λ1

E2
π
H1

21
λ2

Eπ
H2

22

]

η . (3.35)

The operators S3, S4 and S5 are the only time-reversal invariant anti-hermitian operators that can be constructed
out of two vertices H1

21 and one Weinberg-Tomozawa vertex H2
22 with Eπ ’s appearing only in the denominators.
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!Example: gradient flow reg. of the 4NF

Consider e.g. the contribution to the 4NF at N3LO involving a 4π-vertex:
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FIG. 5: Class-II contributions to the 4NF. For notation, see Figs. 1 and 2.

and pion-nucleon interactions H04 and H23, respectively. Using Eqs. (2.14)-(2.17) one obtains the following
contributions to the class-II effective Hamilton operator:
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Similar to the previously considered class-I contributions, we employ additional η-space unitary transformations
with the operator S in Eq. (3.24) given by S = α3S3 + α4S4 + α5S5 where αi are real constants and
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The operators S3, S4 and S5 are the only time-reversal invariant anti-hermitian operators that can be constructed
out of two vertices H1

21 and one Weinberg-Tomozawa vertex H2
22 with Eπ ’s appearing only in the denominators.
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!Computational challenge: Eigenvector continuation

Consider a Hamiltonian  that depends on continuously varying 
LECs .

Ĥ( ⃗C )
⃗C = (C1, C2, …, CN)

EC = variational method that allows to compute GS energy  and 
         state  of  by projecting it onto the „training“ states 
        ,  

E
|Ψgs⟩ Ĥ( ⃗C )

|Ψ(i)
gs⟩ Ĥ( ⃗C i) |Ψ(i)

gs⟩ = E(i)
gs |Ψ(i)

gs⟩

  generalized eigenvalue problem on a low-dim subspace 
      
⇒

{ |Ψ(1)
gs ⟩, |Ψ(2)

gs ⟩, …, |Ψ(d)
gs ⟩}

Lee, Frame, Ekström, König, …

Has been successfully applied to medium-mass nuclei, 2-particle scattering [Furnstahl et al.’20] and 
even to 3-particle scattering [Zhang et al.’21].

Towards a practical approach: eigenvector continuation

• Plane wave basis+Eigenvector continuation W.Detmold’S talk: Gaussian basis+ impoved stochastic variational method

⇒ Eigenvector continuation (EC) with subspace learning Frame:2017fah,Demol:2019yjt,Furnstahl:2020abp,Yapa:2022nnv

• Rayleigh-Ritz variational principle:

E [ψ] = 〈ψ|H|ψ〉
〈ψ|ψ〉 , Eground = Emin

|ψ〉 = am|φm〉, 〈φm|H(ci)|φn〉an = E〈φm|φn〉an

⇒ Generalized to excited state -3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

• To fit or quantify uncertainty: solve above Eqs. with different {ci} repeatly

• EC basis: eigenvectors from a selection of parameter sets {ci}1, {ci}2, ...(training point)

• Naturalness of low energy constants (LEC) of EFT (∼ 1) make the EC more reliable

Lu Meng (孟 璐) | Finite volume NN system using plane wave exansion and eigenvector continuation 5/17
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!Eigenvector continuation

1) calculate  half-shell K-matrices   (conventions: )d K (i)
pk S = 1 − 2imkTkk, 1/Kpk = Re(1/Tpk)

2) calculate the  matrix :d × d (ΔU )ij

Adapting Furnstahl et al., PLB 809 (20) 135719 to momentum space leads to the following procedure (fixed ):k

̂V (ij) ≡ 2 ̂V( ⃗C ) − ̂V( ⃗C i) − ̂V( ⃗C j)

3) compute the inverse matrix (ΔU )−1
ij

4) the on-shell K-matrix for  is approximated as                               with the coefficientsĤ( ⃗C )
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!Eigenvector continuation
Example: the N4LO+ potential in the 1S0 partial wave with :⃗C = (C̃1S0, C1S0, D1S0)D̂(g(n, ✓)) = e�in·Ĵ✓
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for the actual values of , the short-range terms are non-perturbative⃗C
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LECs corresponding to O
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1,2,3, Ophys and O4,5,6. Dotted and solid lines are exact results obtained by solving the LS equation,
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and c1 = ±4 (with cD, cE determined in the same way as explained in the text). Dotted lines are emulated results for c1 = ±4
using RPT.

II. EMULATING ND SCATTERING USING RENORMALIZED PERTURBATION THEORY

Another simple emulator for Nd scattering can be developed using renormalized perturbation theory (RPT). To
explain the method, consider the Hamiltonian that consists of the NN force at N4LO+ and the 3NF at N2LO [9]. The
LECs cD, cE entering the 3NF are determined from the 3H BE and the Nd cross section minimum at EN

lab = 70 MeV.
We now add a particular N4LO short-range contribution to the 3NF, V3N = E1~q 2

1 + 5 perm., see [9] for details. The
LEC E1 can be expressed in terms of a dimensionless parameter cE1 ⌘ c1 as E1 = c1/(F 4

⇡⇤
3
�) [9]. To study the impact

of the c1-term on Nd scattering observables in a meaningful way, one has to re-determine the LECs cD, cE in the
3NF at N2LO for any chosen value of c1 (i.e. to perform implicit renormalization [10]). In [9], this was already done
for c1 = �2, 0, 2. Assuming the validity of (second-order) RPT for the c1-term, we can compute any Nd scattering
observable for an arbitrary value of c1 by performing a quadratic interpolation/extrapolation of the amplitude as
function of c1 without solving the Faddeev equations. In Fig. 2, we show the exact (dashed lines) and RPT-based
(dotted lines) results for c1 = ±4 for selected analyzing powers at EN

lab = 135 MeV. Even for such large c1-values,
RPT is found to be valid at a few percent level.
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FIG. 1: Left: The 3-dimensional space of LECs C̃1S0, C1S0, D1S0 entering the N4LO+ potential [5] in the 1S0 partial wave.

The points O
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1 , Otr

2 , Otr
3 define the training sets ~C1, ~C2, ~C3. The point Ophys corresponds to the actual values of LECs at

N4LO+ for ⇤ = 450 MeV, while O4,5,6 are further arbitrarily chosen test cases. Right: 1S0 phase shifts (modulo n⇡) for the
LECs corresponding to O

tr
1,2,3, Ophys and O4,5,6. Dotted and solid lines are exact results obtained by solving the LS equation,

while empty circles are EC emulated ones based on just 3 training points Otr
1,2,3.
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and c1 = ±4 (with cD, cE determined in the same way as explained in the text). Dotted lines are emulated results for c1 = ±4
using RPT.

II. EMULATING ND SCATTERING USING RENORMALIZED PERTURBATION THEORY

Another simple emulator for Nd scattering can be developed using renormalized perturbation theory (RPT). To
explain the method, consider the Hamiltonian that consists of the NN force at N4LO+ and the 3NF at N2LO [9]. The
LECs cD, cE entering the 3NF are determined from the 3H BE and the Nd cross section minimum at EN

lab = 70 MeV.
We now add a particular N4LO short-range contribution to the 3NF, V3N = E1~q 2

1 + 5 perm., see [9] for details. The
LEC E1 can be expressed in terms of a dimensionless parameter cE1 ⌘ c1 as E1 = c1/(F 4

⇡⇤
3
�) [9]. To study the impact

of the c1-term on Nd scattering observables in a meaningful way, one has to re-determine the LECs cD, cE in the
3NF at N2LO for any chosen value of c1 (i.e. to perform implicit renormalization [10]). In [9], this was already done
for c1 = �2, 0, 2. Assuming the validity of (second-order) RPT for the c1-term, we can compute any Nd scattering
observable for an arbitrary value of c1 by performing a quadratic interpolation/extrapolation of the amplitude as
function of c1 without solving the Faddeev equations. In Fig. 2, we show the exact (dashed lines) and RPT-based
(dotted lines) results for c1 = ±4 for selected analyzing powers at EN

lab = 135 MeV. Even for such large c1-values,
RPT is found to be valid at a few percent level.
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2 , Otr
3 define the training sets ~C1, ~C2, ~C3. The point Ophys corresponds to the actual values of LECs at

N4LO+ for ⇤ = 450 MeV, while O4,5,6 are further arbitrarily chosen test cases. Right: 1S0 phase shifts (modulo n⇡) for the
LECs corresponding to O
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1,2,3, Ophys and O4,5,6. Dotted and solid lines are exact results obtained by solving the LS equation,
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II. EMULATING ND SCATTERING USING RENORMALIZED PERTURBATION THEORY

Another simple emulator for Nd scattering can be developed using renormalized perturbation theory (RPT). To
explain the method, consider the Hamiltonian that consists of the NN force at N4LO+ and the 3NF at N2LO [9]. The
LECs cD, cE entering the 3NF are determined from the 3H BE and the Nd cross section minimum at EN

lab = 70 MeV.
We now add a particular N4LO short-range contribution to the 3NF, V3N = E1~q 2

1 + 5 perm., see [9] for details. The
LEC E1 can be expressed in terms of a dimensionless parameter cE1 ⌘ c1 as E1 = c1/(F 4
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�) [9]. To study the impact

of the c1-term on Nd scattering observables in a meaningful way, one has to re-determine the LECs cD, cE in the
3NF at N2LO for any chosen value of c1 (i.e. to perform implicit renormalization [10]). In [9], this was already done
for c1 = �2, 0, 2. Assuming the validity of (second-order) RPT for the c1-term, we can compute any Nd scattering
observable for an arbitrary value of c1 by performing a quadratic interpolation/extrapolation of the amplitude as
function of c1 without solving the Faddeev equations. In Fig. 2, we show the exact (dashed lines) and RPT-based
(dotted lines) results for c1 = ±4 for selected analyzing powers at EN

lab = 135 MeV. Even for such large c1-values,
RPT is found to be valid at a few percent level.
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3 define the training sets ~C1, ~C2, ~C3. The point Ophys corresponds to the actual values of LECs at

N4LO+ for ⇤ = 450 MeV, while O4,5,6 are further arbitrarily chosen test cases. Right: 1S0 phase shifts (modulo n⇡) for the
LECs corresponding to O
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1,2,3, Ophys and O4,5,6. Dotted and solid lines are exact results obtained by solving the LS equation,

while empty circles are EC emulated ones based on just 3 training points Otr
1,2,3.

� �

-0.4

-0.3

-0.2

-0.1

0

0.1

0 60 120 180

Ayy

� � �

� �

� �

-0.2

0

0.2

0.4 Axx

�

� �

� �
0 60 120 180

�CM [deg]

� �

� �
0 60 120 180

�CM [deg]

� �

� �
0 60 120 180

�CM [deg]

c1 = 0
c1 = 4, exact
c1 = 4, perturbative
c1 = -4, exact
c1 = -4, perturbative

� �

-0.2

0

0.2
Ay

d

� � �

� �

� � �

� �

� � �

� �

� � �

� �

� � �

� �

� � �

FIG. 2: Selected analyzing powers in Nd elastic scattering at EN
lab = 135 MeV. Only 3NF e↵ects are shown by subtracting the

predictions based on the NN force alone (N4LO+, ⇤ = 450 MeV). Solid and dashed lines show e↵ects of the 3NF with c1 = 0
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using RPT.

II. EMULATING ND SCATTERING USING RENORMALIZED PERTURBATION THEORY

Another simple emulator for Nd scattering can be developed using renormalized perturbation theory (RPT). To
explain the method, consider the Hamiltonian that consists of the NN force at N4LO+ and the 3NF at N2LO [9]. The
LECs cD, cE entering the 3NF are determined from the 3H BE and the Nd cross section minimum at EN

lab = 70 MeV.
We now add a particular N4LO short-range contribution to the 3NF, V3N = E1~q 2

1 + 5 perm., see [9] for details. The
LEC E1 can be expressed in terms of a dimensionless parameter cE1 ⌘ c1 as E1 = c1/(F 4
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�) [9]. To study the impact

of the c1-term on Nd scattering observables in a meaningful way, one has to re-determine the LECs cD, cE in the
3NF at N2LO for any chosen value of c1 (i.e. to perform implicit renormalization [10]). In [9], this was already done
for c1 = �2, 0, 2. Assuming the validity of (second-order) RPT for the c1-term, we can compute any Nd scattering
observable for an arbitrary value of c1 by performing a quadratic interpolation/extrapolation of the amplitude as
function of c1 without solving the Faddeev equations. In Fig. 2, we show the exact (dashed lines) and RPT-based
(dotted lines) results for c1 = ±4 for selected analyzing powers at EN

lab = 135 MeV. Even for such large c1-values,
RPT is found to be valid at a few percent level.
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of the c1-term on Nd scattering observables in a meaningful way, one has to re-determine the LECs cD, cE in the
3NF at N2LO for any chosen value of c1 (i.e. to perform implicit renormalization [10]). In [9], this was already done
for c1 = �2, 0, 2. Assuming the validity of (second-order) RPT for the c1-term, we can compute any Nd scattering
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Using just 3 training states in a tiny (perturbative) neighborhood of  allows for very 
precise reproduction of  for all considered  and energies!

⃗C = 0
δ(k) ⃗C

Application to 3N scattering in progress



!Summary and outlook
The 2N sector

— determined  (0.1% accuracy) and  (1.4% accuracy)rstr Qd
— combined with isotope-shift data, extracted the neutron radius

statistically perfect description of NN scattering data at N4LO+

Heavier systems

precision calculations of the deuteron form factors:

The main obstacle towards precision calculations is the uncertainty in the 3N force

Based on the experience in the 2N system, a precise description of Nd scattering data 
will likely require going to N4LO

Major challenges:
— derivation of consistently regularized 3NF: Gradient flow method [Krebs, EE, in progress]

— determination of LECs: Eigenvector continuation [application to 3N scattering in progress]

More precision data for Nd elastic scattering  [New exp. at RIKEN RIBF by Kimiko Sekiguchi et al.]

Also promising results using emulators based on perturbation theory [Witala et al. ’21]


