Study of multi-strange dibaryon at the LHC energy

Yorito Yamaguchi Hiroshima University CHLUSHIQ 2022/10/31-11/3

Multi-strange dibaryons

Tetraquarks

Pentaquarks

Dibaryons

- Long-standing challenge in hadron physics
 Multi-quark state other than mesons & baryons

 Famous H dibaryon as six quark state of uuddss
 Recent discoveries of exotic hadron candidates with heavy quarks
- Possible multi-strange dibaryons predicted by HAL QCD
 ✓ Important to study fundamental hadron interactions in flavor SU(3)
 - ✓ Systems with |S| > 2 are of particular interest
 - $N\Omega (J = 2), \Omega\Omega (J = 0)$
 - → Heavy Ion collisions as unique playground for multistrange systems

Heavy Ion Collisions

 Dynamic space-time evolution of the collisions through phase transition from partonic phase (QGP) to hadronic phase

- 1. Initial collisions
- 2. QGP formation in $\tau < 1 \text{fm}/c$
- 3. Cross-over transition to Hadron phase at $T_c \sim 150 \text{MeV} (\tau \sim a \text{ few } 10 \text{fm}/c)$

2

- 4. chemical freeze-out happens after the transition
- 5. Evolution ends at kinetic freeze-out
- Coalescence as a main particle production process
 ✓ Unique in Heavy ion collisions

Estimation of dibaryon yields

- Hadron yields well-described by Statistical Hadronization model
 - Global fit with T_{ch}, μ_B , volume as free parameters
 - ✓ Works even for loosely bound particles A.Andronic et al., Nature 561, 321-330 (2018)
- Clear mass dependence of the yield

Rough estimation of dibaryon yields in Pb-Pb 0-10% at ALICE

	RUN-1 (2009-12)	RUN-2 (2015-18)
Н	~10 ⁴⁻⁵	~106
NΩ	~104	~10 ⁵
ΩΩ	~10 ²	~10 ³

 → Searches for H & NΩ dibaryons in HIC
 ✓ Less statistics in pp High Multi. and p-Pb, but better S/N than Pb-Pb

Advantages of Heavy Ion Collisions

- Possible enhancement of exotic hadrons by coalescence
 - \checkmark Much larger yield of X(3872) in Pb-Pb than pp
- Enhanced hyperon productions
 - ✓ Increasing at higher multiplicity even in pp/p-Pb collisions

CMS, PRL 128, 032001 (2022)

 $\overline{\Xi}^{\dagger}$ (X3)

 $\Omega^{-}+\overline{\Omega}^{+}$ (×12)-

10

 $\langle dN_{\rm d}/d\eta \rangle$

 10^{3}

How to search for dibaryons

Measurements with possible daughter particles
1. Invariant mass reconstruction
✓ Only if the signal width is sufficiently small
2. Two-particle correlation

AA bound state $(H \rightarrow p + \pi + A)$

ALICE, PLB 752, 267-277 (2016)

ALICE 10⁻¹ Counts/(2MeV/c²) Upper limits (99% CL, 0-10% central) 3500 Pb-Pb -- Thermal model prediction (156 MeV) $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV (0-10% central) 3000 \neg - Decay length of free Λ 10^{-2} $\overline{\Lambda n}$ 2500 10⁻³ 2000 10⁻⁴ √p/2p10⁻² 1500 1000 $\Lambda\Lambda$ 10⁻³ 500 10^{-4} 2.25 2.26 2.2 2.22 2.232.24 2.272×10⁻² 10⁻¹ 2×10⁻¹ 2 3 Invariant mass $(\Lambda p\pi)$ (GeV/ c^2) Decay length (m)

Search for ΛΛ bound state as H dibaryon with RUN-1 Pb-Pb data
 ✓ Invariant mass reconstruction at secondary vertex

- Search for $\overline{\Lambda n}$ bound state as well by $\overline{d} + \pi^+$ combination \rightarrow No peak was found.

 \checkmark Upper limits of the yield below 10⁻¹ of model prediction

 \checkmark Assumed to be long-lived as long as a free Λ

ΛΛ correlation in pp & p-Pb

AA correlation measured in pp & p-Pb collisions

 ✓ Flat correlation allowing a large parameter space
 → Almost excluded a possibility of existence of bound state
 ✓ Non-existence of bound state supported by HAL QCD calculations with nearly physical point

H as resonance state?

ALICE, Nature 588, 232-240 (2020)

• Attractive $p\Xi^-$ interaction by strong interaction

- ✓ Quantitative agreement with HAL QCD
- ✓ Possible resonance state at $N\Xi$ threshold
- → Looking for a possible peak around NE threshold by reconstructing invariant mass of $\Lambda\Lambda$ & $p\Xi^-$ from primary vertex

$N\Omega$ system

ALICE, Nature 588, 232-240 (2020)

• Attractive $p\Omega^-$ interaction by strong interaction

- ✓ More attractive than $p\Xi^-$
- ✓ Consistent with HAL QCD
- Possible quasi-bound state (J = 2) similar to deuteron
- No Pauli blocking & assist by Coulomb attraction for $p\Omega$ \rightarrow Looking for a possible signal for $n\Omega$ quasi-bound state

Single Λ , Ξ , Ω reconstruction

pp 13TeV, High Mult.

Pb-Pb 2.76TeV (Run-1)

- Successful reconstruction for Λ, Ξ, Ω in pp HM, p-Pb, Pb-Pb
 - ✓ pp HM & p-Pb: Good purity for single hyperon reconstruction
 - Λ: 94%, Ξ: 92% in pp HM
 - ✓ Pb-Pb: increase of combinatorial background
 - \rightarrow Ongoing efforts to improve hyperon purities in Pb-Pb

Dibaryon mass reconstruction in small systems

- Initial attempts with pp HM & p-Pb
 - ✓ Analyzed events: 1B (pp HM), 0.6B (p-Pb MB) events
 - ✓ No significant peak so far
 - $p\Omega \rightarrow p + \Omega^-$ analysis is ongoing
 - NA: Statistically suffering with finer mass-bin
 - \rightarrow More statistics from ongoing Pb-Pb data analysis

$p\Omega$ correlation in Pb-Pb

K.Morita et al., PRC 101, 015201 (2020) ALICE, Nature 588, 232-240 (2020) STAR, PLB 790, 490-497 (2019) C(k*) C(k*) R/a₀=-0.3 (b) 0-40% 40-80% $R = 0.73 \, \text{fm}$ $p-\Omega^{-}$ ALICE data 0 Model: $R_n = R_0 = 5 \text{ fm}_-$ Model: $R_n = R_0 = 2.5 \text{ fm}$ Coulomb + HAL-QCD Coulomb + HAL-QCD (with ${}^{3}S_{,}$) vattractive/no bound state 2 C^{(LL1}(q) Coulomb $r_{eff}/R = 0$ (a) 200 $a_0 > 0$ k* (MeV/c) 0.5 $R = 5 \,\mathrm{fm}$ 2.5 fm repulsive/bound state 1.5 0.5 2 0.1 0.2 Ω 0.1 0.2 100 200 300 aR k* (GeV/c) k* (MeV/c)

$\Omega\Omega$ system

S.Gongyo et al., PRL 120, 212001 (2018)

T.Iritani et al., PLB 792, 284-289 (2019)

- Possible ΩΩ bound state for J = 0 predicted by HAL QCD calculation
 ✓ Interesting to see with LHC RUN-3&4 data
 - 100 times more MB events at ALICE with detector upgrade
 - Both mass reconstruction via $\Omega\Omega \rightarrow \Omega + \Lambda + K \& \Omega\Omega$ correlation function in Pb-Pb

Summary

- Making efforts to search for multi-strange dibaryons at LHC energy
 - ✓ Possible (quasi-)bound states for $N\Omega \& \Omega\Omega$ systems predicted by HAL QCD calculations
 - Invariant mass reconstruction & 2 particle correlation with daughter particles
- Current status:
 - Almost excluded AA bound state by initial searches in RUN-1
 - ✓ No significant peaks for $H \to \Lambda + \Lambda/p + \Xi \& n\Omega \to \Lambda + \Xi$ in small systems so far
- Ongoing analysis & plans
 - ✓ Analysis with RUN-2 Pb-Pb data with more statistics
 - Working on improvement of purity for single Hyperons
 - ✓ 2 particle correlation measurements in Pb-Pb
 - Source size dependence of correlation function