

New Strange Pentaquarks

Marek Karliner
Tel Aviv University
Joint work with Jon Rosner

CLUSHIQ22, Sendai, Japan, Oct 31 2022

Outline

- quarks are fundamental building blocks of protons, neutrons and all hadrons
- all quarks are equal, but heavy quarks are more equal than others

new combinations with heavy quarks, incl. exotics:

- newly discovered T_{cc}^+ tetraquark = $(cc\bar{u}\bar{d})$
- stable $bb\bar{u}\bar{d}$ tetraquark
- hadronic molecules, esp. LHCb pentaquark
- "like a new layer in the periodic table"

∃ robust experimental evidence for multiquark states, a.k.a. exotic hadrons with heavy Q

- non $\bar{q}q'$ mesons, e.g. $\bar{Q}Q\bar{q}q$, $QQ\bar{q}\bar{q}$ Q=c,b q=u,d,s
- non qq'q'' baryons, e.g. $\bar{Q}Qqq'q''$ two key questions:
- which additional exotics should we expect?
- how are quarks organized inside them?

tightly-bound tetraquark

each quark sees the color charges of all other quarks

or

hadronic molecule?

two color singlets interacting by light meson x-change

hadrons w. heavy quarks are much simpler:

heavy quarks almost static

ullet smaller spin-dep. interaction $\propto 1/m_Q$

key to accurate predictions:

b baryons,
$$\Xi_{cc}$$
, T_{cc} , T_{bb} ($\%$) ...

The same theoretical toolbox that led to the accurate Ξ_{cc} mass prediction now predicts

a stable, deeply bound *bbūd* tetraquark,

deep below B^0B^- threshold

the first manifestly exotic stable hadron

Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

A. M. Sirunyan *et al.** CMS Collaboration

(Received 25 February 2021; revised 2 September 2021; accepted 22 December 2021; published 19 January 2022)

The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of $\sqrt{s_{\rm NN}}=5.02$ TeV per nucleon pair, using the decay chain X(3872) $\rightarrow J/\psi\pi^+\pi^- \rightarrow \mu^+\mu^-\pi^+\pi^-$. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb⁻¹. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and $15< p_{\rm T}<50$ GeV/c. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to ψ 2S yield ratio is found to be $\rho^{\rm Pb-Pb}=1.08\pm0.49({\rm stat})\pm0.52({\rm syst})$, to be compared with typical values of 0.1 for p p collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.

DOI: 10.1103/PhysRevLett.128.032001

Prompt production of X(3872) in Pb-Pb collisions. \Longrightarrow what about T_{cc}^+ ?

Inclusive signature of either bbq or $bb\bar{q}\bar{q}$: displaced B_c

T. Gershon & A. Poluektov JHEP 1901 (2019) 019

Diagram for production of a B_c^- meson from a double beauty hadron decay.

 $\mathcal{O}(1\%)$ of all B_c -s @LHC come from bbx

- major enhancement of eff. bbx rate
- bbq or bbūā?

incl. $\sigma(bbx)$: heavy ions $\gg pp$

 \Rightarrow displaced B_c @ALICE & RHIC!

$T(bb\bar{u}\bar{d})$ Summary

- stable, deeply bound $bbu\bar{d}$ tetraquark
- $J^P=1^+$, $M(bbar uar d)=10389\pm 12$ MeV
- 215 MeV below BB* threshold
- first manifesty exotic stable hadron
- $(bb\bar{u}\bar{d}) \rightarrow \bar{B}D\pi^-, J/\psi\bar{K}\bar{B},$ $J/\psi J/\psi K^-\bar{K}^0, D^0B^-$
- $(bc\bar{u}\bar{d})$: $J^P=0^+$, borderline bound 7134 ± 13 MeV, 11 MeV below \bar{B}^0D^0
- $(cc\bar{u}\bar{d})$: $J^P=1^+$, borderline unbound 3882 \pm 12 MeV, 7 MeV above the D^0D^{*+}

5 narrow exotic states close to meson-meson thresholds

state	mass MeV	width MeV	$ar{Q}Q$ decay mode	phase space MeV	nearby threshold	Δ <i>E</i> MeV
X(3872)	3872	< 1.2	$J/\psi \pi^+\pi^-$	495	$ar{ar{D}D^*}$	< 1
$Z_{b}(10610)$	10608	21	γ_π	1008	$ar{\mathcal{B}}\mathcal{B}^*$	2 ± 2
$Z_b(10650)$	10651	10	γ_π	1051	$ar{B}^*B^*$	2 ± 2
$Z_{c}(3900)$	3900	24 - 46	$J/\psi\pi$	663	$ar{D}D^*$	24
$Z_c(4020)$	4020	8 - 25	$J/\psi\pi$	783	\bar{D}^*D^*	6
×					ŌD	
X					ĒΒ	

- masses and widths approximate
- quarkonium decays mode listed have max phase space
- offset from threshold for orientation only, v. sensitive to exact mass

Hadronic molecules: deuteron-like

Tetraquarks: same 4 quarks, but tightly bound:

Hadronic Molecule

two color singlets attract through residual forces

Tetraquark

each quark sees color charges of all the other quarks Belle, PRL 116, 212001 (2016):

$$rac{arGamma(Z_b(10610) o ar{B}B^*)}{arGamma(Z_b(10610) o arGamma(1S)\pi)} pprox rac{86\%}{0.54\%} = \mathcal{O}(100)$$

despite 1000 MeV of phase space for $\Upsilon(1S)\pi$ vs few MeV for $\bar{B}B^*$!

overlap of Z_b wave function with $\Upsilon\pi$ dramatically smaller than with $\bar{B}B^*$

similiarly

$$\frac{\Gamma(X(3872) o \bar{D}D^*)}{\Gamma(X(3872) o J/\psi \pi^+ \pi^-)} = 9.1^{+3.4}_{-2.0}$$

$$\frac{\Gamma(Z_c(3885) o \bar{D}D^*)}{\Gamma(Z_c(3885) o J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7$$

4 pieces of experimental evidence in support of molecular interpretation of Z_Q and X(3872):

- 1. masses near thresholds and J^P of S-wave
- 2. narrow width despite very large phase space
- 3. BR(fall apart mode) \gg BR(quarkonium + X)
- 4. no states which require binding through 3 pseudoscalar coupling

the binding mechanism can in principle

apply to any two heavy hadrons

which couple to isospin

and are heavy enough,

be they mesons or baryons

doubly-heavy hadronic molecules: most likely candidates with $Q\bar{Q}'$, Q=c, b, $\bar{Q}'=\bar{c}$, \bar{b} :

$$D\bar{D}^*$$
, $D^*\bar{D}^*$, D^*B^* , $\bar{B}B^*$, \bar{B}^*B^* ,

$$\Sigma_c \bar{D}^*$$
, $\Sigma_c B^*$, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, the lightest of new kind

$$\Sigma_c \bar{\Sigma}_c$$
, $\Sigma_c \bar{\Lambda}_c$, $\Sigma_c \bar{\Lambda}_b$, $\Sigma_b \bar{\Sigma}_b$, $\Sigma_b \bar{\Lambda}_b$, and $\Sigma_b \bar{\Lambda}_c$.

 $c\bar{c}$ and $b\bar{b}$ states decay strongly to $\bar{c}c$ or $\bar{b}b$ and π -(s) $b\bar{c}$ and $c\bar{b}$ states decay strongly to B_c^\pm and π -(s)

QQ' candidates – dibaryons

$$\Sigma_c \Sigma_c$$
, $\Sigma_c \Lambda_c$, $\Sigma_c \Lambda_b$, $\Sigma_b \Sigma_b$, $\Sigma_b \Lambda_b$, and $\Sigma_b \Lambda_c$.

Thresholds for $Q\bar{Q}'$ molecular states

Channel	Minimum	Minimal quark	Threshold	Example of
	isospin	content ^{a,b}	$(MeV)^c$	decay mode
$D\bar{D}^*$	0	с̄сq̄q	3875.8	$J\!/\psi\pi\pi$
$D^*ar{D}^*$	0	cēqā	4017.2	$J\!/\psi\pi\pi$
D^*B^*	0	$car{b}qar{q}$	7333.8	$B_c^+\pi\pi$
$ar{B}B^*$	0	$bar{b}qar{q}$	10604.6	$\Upsilon({\it nS})\pi\pi$
$ar{B}^*B^*$	0	$bar{b}qar{q}$	10650.4	$\Upsilon(\mathit{nS})\pi\pi$
$\Sigma_car{D}^*$	1/2	c̄cqqq′	4462.4	$J\!/\psi$ р
$\Sigma_c B^*$	1/2	c̄bqqq′	7779.5	$B_c^+ p$
$\Sigma_bar{D}^*$	1/2	b̄cqqq′	7823.0	$B_c^- p$
$\Sigma_b B^*$	1/2	$bar{b}qqq'$	11139.6	$\Upsilon(nS)p$
$\Sigma_car{\Lambda}_c$	1	c̄cqq'ū̄d	4740.3	$J\!/\psi~\pi$
$\Sigma_car{\Sigma_c}$	0	$car{c}qq'ar{q}ar{q}'$	4907.6	$J\!/\psi\pi\pi$
$\Sigma_car{\Lambda}_b$	1	cБqq′ ūd̄	8073.3^{d}	$B_c^+\pi$
$\Sigma_bar{\Lambda}_c$	1	b̄cqq'ū̄d	8100.9^{d}	$B_c^-\pi$
$\Sigma_bar{\Lambda}_b$	1	$bar{b}qq'ar{u}ar{d}$	11433.9	$\Upsilon(n S)\pi$
$\Sigma_bar{\Sigma}_b$	0	bb̄qq′ā̄q̄′	11628.8	$\Upsilon(n S)\pi\pi$

^aIgnoring annihilation of quarks.

^cBased on isospin-averaged masses.

^bPlus other charge states when $I \neq 0$.

^dThresholds differ by 27.6 MeV.

New Exotic Meson and Baryon Resonances from Doubly Heavy Hadronic Molecules

Marek Karliner^{1,*} and Jonathan L. Rosner^{2,†}

¹School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel

²Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 S. Ellis Avenue,

Chicago, Illinois 60637, USA

(Received 13 July 2015; published 14 September 2015)

We predict several new exotic doubly heavy hadronic resonances, inferring from the observed exotic bottomoniumlike and charmoniumlike narrow states X(3872), $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$, and $Z_c(4020/4025)$. We interpret the binding mechanism as mostly molecularlike isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q = c, b and antiquark $\bar{Q}' = \bar{c}$, \bar{b} , namely, $D\bar{D}^*$, $D^*\bar{D}^*$, D^*B^* , $\bar{B}B^*$, $\bar{B}B^*$, $\bar{B}B^*$, $\bar{C}D^*$, $\bar{C$

DOI: 10.1103/PhysRevLett.115.122001 PACS numbers: 14.20.Pt, 12.39.Hg, 12.39.Jh, 14.40.Rt

PRL **115**, 072001 (2015)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 14 AUGUST 2015

3

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays

R. Aaij et al.*

(LHCb Collaboration)
(Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark states, in $\Lambda_b^0 \to J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29$ MeV and a width of $205 \pm 18 \pm 86$ MeV, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5$ MeV and a width of $39 \pm 5 \pm 19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

DOI: 10.1103/PhysRevLett.115.072001 PACS numbers: 14.40.Pq, 13.25.Gv

 $P_c(4450)$: predicted, narrow: $\Gamma=39\pm5\pm19$, 10 MeV from $\Sigma_c\bar{D}^*$ threshold perfect Argand plot: a molecule

 $P_c(4380)$: not predicted, wide: $\Gamma = 205 \pm 18 \pm 86$ MeV, Argand plot not resonance-like 777

$P_c(4450)$ might be just the first of many "heavy deuterons"

The near-threshold masses and the narrow widths of $P_c(4312)^+$, $P_c(4440)^+$ and $P_c(4457)^+$ favor "molecular" pentaquarks with meson-baryon substructure!

observe all 3 S-wave states:

$$\Sigma_c \bar{D}; \quad J^P = \frac{1}{2}^-,$$

$$\Sigma_c \bar{D}^*$$
; $J^P = \frac{1}{2}^-$, $\frac{3}{2}^-$

for $Q \to \infty$ 4 more *S*-wave states:

$$\Sigma_c^* \bar{D}; \quad J^P = \frac{3}{2}^-$$

$$\Sigma_c^* \bar{D}^*$$
; $J^P = \frac{1}{2}^-$, $\frac{3}{2}^-$, $\frac{5}{2}^-$

but
$$\Gamma(\Sigma_c^* o \Lambda_c \pi) pprox 15$$
 MeV...

M. Karliner, New Strange Pentaquarks

doubly-heavy hadronic molecules: most likely candidates with $Q\bar{Q}'$, Q=c, b, $\bar{Q}'=\bar{c}$, \bar{b} :

$$D\bar{D}^*$$
, $D^*\bar{D}^*$, D^*B^* , $\bar{B}B^*$, \bar{B}^*B^* ,

 $\Sigma_c \bar{D}^*$, $\Sigma_c B^*$, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, the lightest of new kind

 J/ψ Λ resonance \Rightarrow also

$$\Xi_c \bar{D}^*$$
, $\Xi_c B^*$, $\Xi_b \bar{D}^*$, $\Xi_b B^*$

recent news from LHCb

evidence for a new members of the family:

 $J/\psi \Lambda$ resonances in

$$B^- o J/\psi \Lambda \bar{p}, \quad \Xi_b^- o J/\psi \Lambda K^-$$

⇒ new "molecular" pentaquarks:

$$(c\bar{c}sud)pprox eta_c^0(csd)ar{D}^{*0}(ar{c}u)
ightarrow J/\psi \Lambda$$

LHCb arXiv:2012.10380, Sci. Bull. **66**, 1278-1287 (2021)

LHC seminar "Particle Zoo 2.0: New tetra- and pentaquarks at LHCb", July 5, 2022, https://indico.cern.ch/event/1176505/ and LHCb-PAPER-2022-031, in preparation.

recent news from LHCb

evidence for a new members of the family:

 $J/\psi \Lambda$ resonances in

$$B^- o J/\psi \Lambda \bar{p}, \quad \Xi_b^- o J/\psi \Lambda K^-$$

⇒ new "molecular" pentaquarks:

$$(car csud)pprox eta_c^0(csd)ar D^{*0}(ar cu) o J\!/\!\psi \Lambda$$

vs.
$$(car c u u d) pprox \Sigma_c^+(c u d) ar D^{*0}(ar c u) o J/\psi \, p$$

LHCb arXiv:2012.10380, Sci. Bull. **66**, 1278-1287 (2021)

LHC seminar "Particle Zoo 2.0: New tetra- and pentaquarks at LHCb", July 5, 2022, https://indico.cern.ch/event/1176505/ and LHCb-PAPER-2022-031, in preparation.

(ccuds) molecular pentaquarks

a very clear peak $> 10 \sigma$:

$$P_{\psi s}^{\Lambda}(4338)$$
: $M=4338.2\pm0.7~{
m MeV},~~\Gamma=7.0\pm1.2~{
m MeV}$

and a structure with two peaks split by 13 MeV, @ 3.1 σ

$$P_{\psi s}^{\Lambda}(4455)$$
: $M=4454.9\pm 2.7~{
m MeV},~~\Gamma=7.5\pm 9.7~{
m MeV}$

$$P_{\psi s}^{\Lambda}(4468)$$
: $M=4467.8\pm3.7~{
m MeV},~~\Gamma=5.2\pm5.3~{
m MeV}.$

Several features of $P_{\psi s}^{\Lambda}(4338)$ strongly suggestive of a $\Xi_c \bar{D}$ hadronic molecule:

(a) Vicinity to the relevant baryon-meson threshold(s):

$$M[P_{\psi s}^{\Lambda}(4338)]$$
 only 0.8 MeV above $\Xi_c^+ D^-$
2.9 MeV above $\Xi_c^0 D^0$

(b) Spin and parity:

$$\frac{1}{2}^+$$
 baryon & 0^- meson
S-wave molecule $\Rightarrow \frac{1}{2}^-$

(c) $\Gamma \ll \text{phase space}$:

$$\Gamma[P_{\psi s}^{\Lambda}(4338)] = 7.0 \pm 1.2 \text{ MeV}$$

vs. Q -value = 126 MeV.

More support (with \ll stats) for molecular interpret. from earlier LHCb $P_{\psi s}^{\Lambda}(4459)$ pentaquark data

A peak in $M_{inv}(J/\psi \Lambda)$ in $\Xi_b^- \to J/\psi \Lambda K^-$,

 $M = 4458.8 \pm 2.9^{+4.7}_{-1.1}$ MeV, $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV, @3.1 σ .

M approx. 20 MeV below the $\Xi_c \bar{D}^*$ threshold.

Remarkably, LHCb has equally good fit w. a two peak structure, with the two peaks split by 13 MeV:

$$P_{\psi_s}^{\Lambda}(4455)$$
: $M = 4454.9 \pm 2.7 \text{ MeV}$, $\Gamma = 7.5 \pm 9.7 \text{ MeV}$

$$P_{\psi s}^{\Lambda}(4468)$$
: $M=4467.8\pm3.7~{
m MeV},~~\Gamma=5.2\pm5.3~{
m MeV}.$

highly reminescent of LHCb $P_{\psi}^{N}(4440)^{+}$ and $P_{\psi}^{N}(4457)^{+}$

caveat:

analogy between $\Sigma_c \bar{D}^{(*)}$ and $\Xi_c \bar{D}^{(*)}$ h.m. goes only so far, as $P_{\psi s}^{\Lambda}(4455)$, $P_{\psi s}^{\Lambda}(4468)$ not an $SU(3)_F$ rotation $q \to s$ (q=u,d) of $P_{\psi}^{N}(4440)^+$, $P_{\psi}^{N}(4457)^+$.

Nor $P_{\psi s}^{\Lambda}(4338)$ an $SU(3)_F$ rotation of $P_{\psi}^{N}(4312)^+$,

because P_{ψ}^{N} are $\Sigma_{c}\bar{D}^{(*)}$ h.m.

and under $SU(3)_F$ q o s (q=u,d) $\Sigma_c o \Xi_c', \quad \Sigma_c
eq \Xi_c$

 $\Delta M \equiv M(\Xi_c') - M(\Xi_c) pprox 110 \; {
m MeV} < m_\pi$, so Ξ_c' stable under s.i.

 \Rightarrow in addition to the already observed $\Xi_c \bar{D}^{(*)}$ three h.m.

expect three additional v. narrow $\Xi_c'\bar{D}^{(*)}$ h.m.

shifted upwards by $\Delta M pprox 110$ MeV for each J^P

PHYSICAL REVIEW D 106, 036024 (2022)

New strange pentaquarks

Marek Karliner^{1,*} and Jonathan L. Rosner^{2,†}

¹School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel

²Enrico Fermi Institute and Department of Physics, University of Chicago,

5620 South Ellis Avenue, Chicago, Illinois 60637, USA

(Received 25 July 2022; accepted 8 August 2022; published 25 August 2022)

The new strange pentaquarks observed by LHCb are very likely hadronic molecules consisting of $\Xi_c \bar{D}$ and $\Xi_c \bar{D}^*$. We discuss the experimental evidence supporting this conclusion, pointing out the similarities and differences with the $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ pentaquarks in the nonstrange sector. The latter clearly are hadronic molecules consisting of $\Sigma_c \bar{D}$ and $\Sigma_c \bar{D}^*$. Following this line of thought, we predict three additional strange pentaquarks consisting of $\Xi_c^l \bar{D}$ and $\Xi_c^l \bar{D}^*$. The masses of these states are expected to be shifted upward by $M(\Xi_c^l) = M(\Xi_c) \approx 110$ MeV with respect to the corresponding known strange pentaquarks.

DOI: 10.1103/PhysRevD.106.036024

Pentaquarks as hadronic molecules. $\Sigma_c \bar{D}^{(*)}$ states are denoted by black diamonds, $\Xi_c \bar{D}^{(*)}$ states by open red diamonds and $\Xi_c' \bar{D}^{(*)}$ states by blue circles.

Pentaquarks as hadronic molecules. $\Sigma_c \bar{D}^{(*)}$ states are denoted by black diamonds, $\Xi_c \bar{D}^{(*)}$ states by open red diamonds and $\Xi_c' \bar{D}^{(*)}$ states by blue circles.

LHCb, 08/2020:

narrow D^+K^- resonance in $B^- \to D^-D^+K^-$

first exotic hadron with open heavy flavor:

csūd̄ tetraquark

 $cc\bar{u}\bar{d}$: ϵ^+ 2 meson threshold

 \Rightarrow expect $cs\bar{u}\bar{d}$ well above D^+K^- threshold

2009.00025 & 2009.00026

• two BW-s:

$$X_0(2900),\ J^P=0^+\ {
m at}\ {2866\pm7}\ {
m MeV},\ arGamma_0=57\pm13\ {
m MeV} \ X_1(2900),\ J^P=1^-\ {
m at}\ 2904\pm7\ {
m MeV}\ arGamma_1=110\pm12\ {
m MeV}.$$

• our interpretation:

$$X_0(2900) = cs\bar{u}\bar{d}$$
 isosinglet compact tetraquark, mass = $\frac{2863\pm12}{12}$ MeV, from quark model incl. 2 string junctions

- the first exotic hadron with open heavy flavor
- analogous $bs\bar{u}\bar{d}$ Tq predicted at $6213{\pm}12$ MeV
- $X_1(2900)$: ? currently $J^P=1^-$ preferred, but if $J^P=2^+$, possibly a D^*K^* molecule, c.f. threshold at 2902 MeV

two v. different types of exotics:

 $Q\bar{Q}q\bar{q}$

 $QQ\bar{q}\bar{q}$

e.g.

 $Z_b(10610)$

 $\bar{B}B^*$ molecule

 $T(bb\bar{u}\bar{d})$

tightly-bound tetraquark

why is it so?

Exotics with $\overline{Q}Q$ vs. QQ: very different

 $V(\bar{Q}Q) = 2V(QQ)$, hundreds of MeV

but only if $\overline{Q}Q$ color singlet

- $\Rightarrow \bar{Q}Q$ can immediately hadronize as quarkonium
- \Rightarrow exotics: \overline{Q} in one hadron and Q in the other
- ⇒ deuteron-like "hadronic molecules"
- vs. QQ never a color singlet,
- ⇒ tightly bound exotics, tetraquarks

$$T(bb\bar{u}\bar{d})$$
:
 $m_b \approx 5 \text{ GeV}$
 $\Rightarrow R(bb) \sim 0.2 \text{ fm}$
 $V(r) = -\frac{\alpha_s(r)}{r} + \sigma r$
 $\Rightarrow B(bb) \approx -280 \text{ MeV}$
tightly bound, but $\bar{3}_c$,
so cannot disangage from $\bar{u}\bar{d}$

 $Z_b(10610)$: $b\bar{b}u\bar{d}$ if $b\bar{b}$ compact \Rightarrow color singlet: decouple from $u\bar{d}$, $Z_b \to \Upsilon \pi^+$ so only semi-stable config.,

"hadronic molecule:" $ar{B}B^*\sim 1$ GeV above $\varUpsilon\pi$ yet narrow ~ 15 MeV, because $r(\Upsilon)/r(\bar{B}B^*) \ll 1$

very different!

Upshot:

 $bb\bar{u}\bar{d}$: tightly bound tetraquark

 $b\bar{b}q\bar{q}$: a molecule

SUMMARY: NEW STRANGE PENTAQUARKS IN CONTEXT

- narrow ccūd̄ tetraquark discovered by LHCb what about in heavy ions?
- doubly charmed baryon found exactly where predicted $\Xi_{cc}^{++}(ccu) \Rightarrow (bcq), (bbq)$
- stable bbūd̄ tetraquark: LHCb!
- narrow exotics with $Q\bar{Q}$: "heavy deuterons" / molecules $\bar{D}D^*$, \bar{D}^*D^* , $\bar{B}B^*$, \bar{B}^*B^* , $\Sigma_c\bar{D}^*(S=\frac{1}{2},\frac{3}{2})$, $\Sigma_c\bar{D}(S=\frac{1}{2})$; $\gamma p \to J/\psi p$?

$$3 \ \Xi_c \ \bar{D}^{(*)} \ {\sf states} \ o \ 3 \ \Xi_c' \ \bar{D}^{(*)} \ {\sf states}; \ \Delta M \approx 110 \ {\sf MeV}$$

$$\Sigma_c B^*$$
, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, $D^* B^*$, ...

- D^+K^- res. $\Leftrightarrow cs\bar{u}\bar{d}$ Tq w. string junction $\Longrightarrow bs\bar{u}\bar{d} = \bar{B}^0K^-$?
- $J/\psi J/\psi$ res. \Leftrightarrow excited $cc\bar{c}\bar{c}$ Tq, probably 2S, $J/\psi \Upsilon$, $\Upsilon \Upsilon$?

exciting new spectroscopy awaiting discovery

Backup transparencies