

Ab initio electroweak reactions with nuclei

Sonia Bacca

Johannes Gutenberg Universität Mainz

November 1st, 2022

International Symposium on "Clustering as a window on the hierarchical structure of quantum systems" Sendai, Japan

Ab initio nuclear theory

• Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)

• Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

 $H|\psi_i\rangle = E_i|\psi_i\rangle$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

using phenomenological potentials or interactions from chiral effective field theory (χ EFT)

• Find numerical solutions with no approximations or controllable approximations

from E. Epelbaum (2018), see yesterday's talk

from E. Epelbaum (2018), see yesterday's talk

from E. Epelbaum (2018), see yesterday's talk

Ab initio calculations starting from NN+3N interactions

J.Simonis, SB, G.Hagen, Eur. Phys. J. A 55, 241 (2019).

Ab initio calculations starting from NN+3N interactions

Nature Phys. 18, 1196 (2022)

²⁰⁸Pb

J.Simonis, SB, G.Hagen, Eur. Phys. J. A 55, 241 (2019).

Electroweak reactions

Cross
Section
$$\sigma_{ew} \sim R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Electroweak operator

The continuum problem

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on E_f , many channels may be involved

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Exact knowledge limited in energy and mass number

$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Exact knowledge limited in energy and mass number

$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle \quad \underset{\text{R459}}{\text{Efros, et al., JPG.Nucl.Part.Phys.34 (2007)}}$$

$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Exact knowledge limited in energy and mass number

$$R(\omega) = \int_{f} \left| \left\langle \psi_{f} \middle| \Theta \middle| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$
Exact knowledge limited in
energy and mass number
$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \middle| \tilde{\psi} \right\rangle \quad \underset{\text{Bound-State-like}}{\text{Efros, et al., JPG.Nucl.Part.Phys.34 (2007)}}$$

$$(H - E_{0} - \sigma + i\Gamma) \middle| \tilde{\psi} \right\rangle = \Theta \middle| \psi_{0} \rangle \quad \underset{\text{equation}}{\text{Bound-state-like}}$$

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \middle| \Theta \middle| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$
Exact knowledge limited in
energy and mass number
$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \middle| \tilde{\psi} \right\rangle \quad \underset{\text{Bfros, et al., JPG.Nucl.Part.Phys.34 (2007)}}{\text{Efros, et al., JPG.Nucl.Part.Phys.34 (2007)}}$$

$$(H - E_{0} - \sigma + i\Gamma) \middle| \tilde{\psi} \right\rangle = \Theta \middle| \psi_{0} \rangle \quad \underset{\text{equation}}{\text{Bound-state-like equation}}$$

Solved with:

- Hyper-spherical Harmonics
- No core shell model
- Coupled Cluster theory

 $|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle$ $T = \sum T_{(A)}$

cluster expansion

$$|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle$$
 $T =$

 $=\sum T_{(A)}$

cluster expansion

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

$$|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle \qquad T = \sum T_{(A)}$$

cluster expansion

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle \qquad T =$$

 $\sum T_{(A)}$

cluster expansion T_1 T_2 T_3 a,b,... i,j,... CCSD CCSDT $\oint \left\{ \begin{array}{l} \bar{H} = e^{-T} H e^{T} \\ \bar{\Theta} = e^{-T} \Theta e^{T} \\ |\tilde{\Psi}_{R}\rangle = \hat{R} |\Phi_{0}\rangle \end{array} \right.$ SB et al., Phys. Rev. Lett. 111, 122502 (2013) $(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$ $\mathcal{R}(z) = r_0(z) + \sum_{ai} r_i^a(z) a_a^{\dagger} a_i + \frac{1}{4} \sum_{abij} r_{ij}^{ab}(z) a_a^{\dagger} a_b^{\dagger} a_j a_i + \dots$

Results with implementation at CCSD level + some study of triples contributions

Validation in 4He

Dipole response function

Comparison of CCSD with exact hyperspherical harmonics with NN forces at N³LO

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

Emergence of structures in nuclei

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Emergence of structures in nuclei

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Unstable Nuclei

From Coulomb excitation experiments

Emergence of structures in nuclei

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Do we see the emergence of collective motions from first principle calculations?

Sonia Bacca

Unstable Nuclei

Leistenschneider et al.

Fewer data, pigmy dipole resonances

Giant dipole resonances

SB et al., PRC 90, 064619 (2014)

Pygmy dipole resonance

Connections to astrophysics

Nuclear Equation of State

$$E(\rho, \delta) = E(\rho, 0) + S(\rho)\delta^{2} + \mathcal{O}(\delta^{4})$$

$$S(\rho) = S_{0}^{-} + \frac{L}{3\rho_{0}}(\rho - \rho_{0}) + \frac{K_{sym}}{18\rho_{0}^{2}}(\rho - \rho_{0})^{2} + \dots$$

Symmetry energy at saturation density

Slope parameter, related to pressure of pure neutron matter at

 $\rho = \rho_n + \rho_p, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$

The ⁴⁸Ca nucleus

The ⁴⁸Ca nucleus

The ⁶⁸Ni nucleus

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

The ⁶⁸Ni nucleus

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

⁸He

F. Bonaiti, SB, G.Hagen, PRC 105, 034313 (2022)

4He monopole transition

⁴He monopole transition

SB et al., Phys. Rev. Lett. 110, 042503 (2013)

• Hiyama's calculation agree with data but our computation disagree

• Experimental data have large error bars

⁴He monopole transition

Kegel et al., arXiv:2112.10582

- New experiment in Mainz with dramatically improved ⇒ problem is in the theory
- Calculations done with different methods and different interactions. Can the different methods be the problem?

⁴He monopole transition

Kegel et al., arXiv:2112.10582

- We perfectly reproduce Hiyama's results within error bars.
- Puzzle remains to be solved.

Conclusions

• Remarkable progress in first principle calculations of electromagnetic properties and more work is ahead of us

Thanks to all my collaborators:

B. Acharya, F. Bonaiti, S. Li Muli, W. Jiang, J.E.Sobczyk, N. Barnea, G. Hagen, W. Leidemann, T. Papenbrock, G. Orlandini, J. Simonis, C. Payne, et al.

Conclusions

• Remarkable progress in first principle calculations of electromagnetic properties and more work is ahead of us

Thanks to all my collaborators:

B. Acharya, F. Bonaiti, S. Li Muli, W. Jiang, J.E.Sobczyk, N. Barnea, G. Hagen, W. Leidemann, T. Papenbrock, G. Orlandini, J. Simonis, C. Payne, et al.

Thanks for your attention!

25th European Conference on Few-Body Problems in Physics

Mainz, 30 July - 4 Aug, 2023

Topics:

- Hadron physics
- Nuclei and hypernuclei
- Electroweak processes
- Nuclear astrophysics
- Cold atoms and quantum gases
- Atoms and molecules
- Few-body methods
- Few-body aspects of many-body systems

Strong overlap with this Symposium: Keywords mentioned in Nakamura's introduction: Three-body forces Halo nuclei Hoyle states Universality Effimov physics Feshbach resonance

Halo nuclei

⁸He

JG U

Halo nuclei

⁸He

Halo nucleus

Inversion of the LIT

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_i \chi_i(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$$

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_{i}\chi_{i}(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_{i}\mathcal{L}[\chi_{i}(\omega, \alpha)]$$
fit
$$\int_{0.4}^{0.5} \frac{1}{0.4} \int_{0.4}^{0.5} \frac{1}{0.4}$$

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_{i}\chi_{i}(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_{i}\mathcal{L}[\chi_{i}(\omega, \alpha)]$$
fit
$$\int_{0.4}^{0.5} \frac{1}{0.4} \int_{0.4}^{0.5} \frac{1}{0.4}$$

Message: Inversions are stable if the LIT is calculated precisely enough

Sum Rules

$$m_n = \int_0^\infty d\omega \,\,\omega^n R(\omega) = \langle \Psi_0 | \hat{\Theta}^\dagger (\hat{H} - E_0)^n \hat{\Theta} | \Psi_0 \rangle$$

The polarizability is an inverse-energy weighted sum rule of the dipole response function

$$\alpha_D = 2 \ \alpha \ m_{-1} = 2 \ \alpha \ \langle \Psi_0 | \Theta^{\dagger} \frac{1}{(H - E_0)} \Theta | \Psi_0 \rangle$$

Sum Rules

$$m_n = \int_0^\infty d\omega \,\,\omega^n R(\omega) = \langle \Psi_0 | \hat{\Theta}^\dagger (\hat{H} - E_0)^n \hat{\Theta} | \Psi_0 \rangle$$

The polarizability is an inverse-energy weighted sum rule of the dipole response function

$$\alpha_D = 2 \ \alpha \ m_{-1} = 2 \ \alpha \ \langle \Psi_0 | \Theta^{\dagger} \frac{1}{(H - E_0)} \Theta | \Psi_0 \rangle$$

Can be obtained from the Lorentz Integral Transform in the limit of $\Gamma \rightarrow 0$

