utilizing quark clusters

Hiroaki Ohnishi ELPH, Tohoku University

International Symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2022) 2022.11.01

Elucidation of hierarchical structure between quark and hadron phases

Elucidation of hierarchical structure between quark and hadron phases utilizing quark clusters

A challenge to reveal new degrees of freedom to describe hadron

Hiroaki Ohnishi ELPH, Tohoku University

International Symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2022) 2022.11.01

Elucidation of hierarchical structure between quark and hadron phases utilizing quark clusters

A challenge to reveal new degrees of freedom to describe hadron

Summary and perspective from A02 project Hiroaki Ohnishi ELPH, Tohoku University

International Symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2022) 2022.11.01

 Our gourd (A02) is focusing on "Hadron" to reveal and understand the hierarchical structure of matter

- Our gourd (A02) is focusing on "Hadron" to reveal and understand the hierarchical structure of matter Two experimental projects (originally)
 - have been proceeded by the AO2

- Our gourd (A02) is focusing on "Hadron" to reveal and understand the hierarchical structure of matter
- Two experimental projects (originally) have been proceeded by the AO2
 - Hadron spectroscopy
 - with hadron beam at J-PARC
 - with photon beam at SPring-8

- Introduction
 - Baryon, meson, and exotic hadron
 - relation between threshold and cluster
- Selected topics
 - Baryon spectroscopy
 - meson-baryon interaction
 - Kaonic-nucleus cluster
- Summary

Hadron

- Particles that interact by the strong interaction are called "Hadron". Hadron is known to be a composite particles of quarks.
- Hadrons are categorized as mainly two classes.

Baryon

- Baryon: Family of proton/neutron. Bound state of three quarks
- Meson: quark antiquark bound state.

Three fermion system

Unfortunately, a single quark can not be separated from a hadron Confinement of quarks inside hadron

fermion-anti-fermion system

Exotic hadron

- Baryons and mesons are not the only configurations allowed by the theory of strong interaction, QCD.
- Quark has "color charge" (RBG) \rightarrow Color of hadron must be "color neutral (white)".
- . Following configuration can be allowed other than qqq and $\bar{q}q$ config.
 - (tetra-quark) • qqqq
 - (penta-quak baryon) • *qqqqq*
 - (di-baryon, six quarks)

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

• Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

LIGHT UNFLAVORED				STRANGE		CHARMED, STRANGE		$c\overline{c}$ continued	
	(S = C = G (PC)	= B = 0)	6020	$(S = \pm 1, C =$	= B = 0	(C = S =	±1)		$P(J^{rc})$
	<i>P</i> (<i>J</i> ~)		r(J' C)		<i>i</i> (<i>J</i>)		()	 ψ(3770) 	$0^{-}(1^{-})$
• π^{\pm}	$1^{-}(0^{-})$	 π₂(1670) 	$1^{-}(2^{-+})$	• K [±]	$1/2(0^{-})$	• D_s^{\pm}	0(0-)	 ψ₂(3823) 	0-(2)
• 70	$1^{-}(0^{-}+)$	• $\phi(1680)$	$0^{-}(1^{-})$	• K ⁰	$1/2(0^{-})$	• $D_s^{*\pm}$	0(?:)	 ψ₃(3842) 	$0^{-}(3^{-})$
• 17	$0^+(0^{-+})$	 ρ₃(1690) 	1+(3)	• K ⁰ _S	$1/2(0^{-})$	• $D_{s0}^{*}(2317)^{\pm}$	0(0+)	$\chi_{c0}(3850)$	$0^+(0^++)$
• f ₀ (500)	$0^+(0^+)$	 ρ(1700) 	$1^+(1^-)$	• K ⁰ _L	$1/2(0^{-})$	• $D_{s1}(2460)^{\pm}$	0(1+)	• $\chi_{c1}(3872)$	$0^+(1^+)^+$
 ρ(770) 	$1^+(1^-)$	• a ₂ (1700)	$1^{-}(2^{+})$	 K[*]₀(700) 	$1/2(0^+)$	• $D_{s1}(2536)^+$	0(1+)	• $Z_c(3900)$	$1^+(1^+)$
 ω(782) 	$0^{-}(1^{-})$	• f ₀ (1710)	$0^+(0^++)$	• K**(892)	$1/2(1^{-})$	 D[*]_{\$2}(2573) 	0(2+)	• X(3915)	$0^+(0/2^++)$
• η⁄ (958)	$0^{+}(0^{-+})$	$\eta(1760)$	$0^+(0^-+)$	• K ₁ (1270)	$1/2(1^+)$	• $D_{s1}^{*}(2700)^{\pm}$	0(1-)	• $\chi_{c2}(3930)$	$0^{+}(2^{+})^{+})$
• f ₀ (980)	$0^{+}(0^{+}^{+})$	• π(1800)	$1^{-}(0^{-}+)$	• $K_1(1400)$	$1/2(1^+)$	$D_{s1}^{*}(2860)^{\pm}$	0(1-)	X(3940)	r(r)
• a ₀ (980)	1 (0 + +)	f ₂ (1810)	$0^+(2^+^+)$	• K*(1410)	$1/2(1^{-})$	$D^*_{s3}(2860)^{\pm}$	0(3_)	• X (4020)-	$1^{+}(2^{-})$
• $\phi(1020)$	0(1)	X(1835)	$f^{(0)}(0^{-1})$	 K₀[*](1430) 	$1/2(0^+)$	$D_{sJ}(3040)^{\pm}$	0(? [?])	• \$\varphi(4040) + \vee \vee \vee \vee \vee \vee \vee \v	0(1)
• $h_1(1170)$	0(1 +)	• $\phi_3(1850)$	0(3)	• K ₂ (1430)	$1/2(2^+)$	DOTT		$\chi(4050)^{\pm}$	$\frac{1}{1+(2^2-)}$
• $B_1(1235)$	$\frac{1}{1}$ (1 +)	• $\eta_2(1870)$	$0^+(2^{-+})$	K(1460)	$1/2(0^{-})$		JM -1)	$X(4055)^{\pm}$	$1^{-}(2^{-})$ $1^{-}(2^{-})$
• $a_1(1260)$	$\frac{1}{2}(1+1)$	• $\pi_2(1880)$	$1(2^{-1})$	$K_2(1580)$	$1/2(2^{-})$		- 17	$X(4100)^{-}$	$\frac{1}{n+(1++)}$
• $f_2(1270)$	$0^{+}(2^{+})$	$\rho(1900)$	$1^{+}(1^{-})$	K(1630)	$1/2(?^{2})$	• B [±]	$1/2(0^{-})$	• $\chi_{c1}(4140)$	$a^{-}(1 - 1)$
• <i>I</i> ₁ (1285)	$0^{+}(1^{+})$	$f_2(1910)$	$0^{+}(2^{+}^{+})$	$K_1(1650)$	$1/2(1^+)$	• B ⁰	$1/2(0^{-})$	• ψ(4160) ×(4160)	$\frac{1}{2}(2^{2})$
• $\eta(1295)$	$1 = (0 = \pm)$	$a_0(1950)$	1(0+1)	• K*(1680)	$1/2(1^{-})$	• B [±] /B ^o ADN	IX TURE	Z (4100)	1 + (1 + -)
• $\pi(1300)$	1 (0 + 1)	• f ₂ (1950)	$0^{+}(2^{+})$	• K ₂ (1770)	$1/2(2^{-})$	• $B^{\pm}/B^{\circ}/B^{\circ}_{s}/$	b-baryon	$Z_{c}(4200)$	$1^{+}(1^{+})$
• $a_2(1320)$	$\frac{1}{2}(2+1)$	• a ₄ (1970)	1 (4 - 1)	 K[*]₃(1780) 	$1/2(3^{-})$	V ₂ and V ₂	с СКМ Ма-	• $\psi(4230)$	$1 \pm (2)$
$\bullet f_0(1370)$	1 - (1 - +)	$p_3(1990)$	$1^{+}(3^{-})$	• K ₂ (1320)	$1/2(2^{-})$	trix Elements	5	$R_{c0}(4240)$	$1 = (2^{2} + 1)^{-1}$
• $\pi_1(1400)$	1(1 +)	$\pi_2(2005)$	$1(2^{+})$	K(1830)	$1/2(0^{-})$	• B*	$1/2(1^{-})$	A (4250)=	1 (2 - 1)
• $\eta(1405)$	0 - (0 + -)	• <i>I</i> ₂ (2010)	$0^+(2^++)$	$\kappa_{0}^{*}(1950)$	$1/2(0^+)$	• $B_1(5721)^+$	$1/2(1^+)$	$\psi(4200)$	0(1)
• $n_1(1415)$	$\frac{0}{1-(1++)}$	$f_0(2020)$	$0^+(0^+)$	$K_{2}^{*}(1980)$	$1/2(2^+)$	• $B_1(5721)^0$	$1/2(1^+)$	• $\chi_{c1}(4274)$	$0^{+}(2^{2}+)$
$a_1(1420)$	$\frac{1}{2}(1+1)$	• f4(2050) = (2100)	$1 = (2 = \pm)$	 K[*]₄(2045) 	$1/2(4^+)$	$B_{J}^{*}(5732)$?(??)	A (4350)	$0^{-}(1^{-})$
\bullet $7_1(1420)$	0 - (1)	$\pi_2(2100)$	1 (2 +)	$K_2(2250)$	$1/2(2^{-})$	 B[*]₂(5747)⁺ 	$1/2(2^+)$	• $\psi(4300)$	0 (1)
•ω(1420) € (1420)	0(1)	$f_0(2100)$	$0^+(0^+)$	$K_3(2320)$	$1/2(3^+)$	 B[*]₂(5747)⁰ 	$1/2(2^+)$	$\psi(4390)$	$0^{-}(1^{-})$
$T_2(1430)$	$1 = (0 \pm 1)$	$f_2(2150)$	1 + (1)	$K_{5}^{*}(2380)$	$1/2(5^{-})$	B _J (5840) ⁺	$1/2(?^{?})$	• \$\$(4415)	$1 \pm (1 \pm -)$
• $a_0(1450)$	1 (0 - 1)	$\rho(2150)$	$1 \cdot (1)$	K ₄ (2500)	$1/2(4^{-})$	BJ(5840) ⁰	$1/2(?^{?})$	• Z _c (4450)	$a^{+}(a^{+}+)$
$= \rho(1450)$	$a^{+}(a^{-} + 1)$	• φ(2170) € (2200)	0(1)	K(3100)	? [?] (? ^{??})	 B_j(5970)⁺ 	$1/2(?^{?})$	χ _{c0} (4500)	$0^{-}(1^{-})$
• $\eta(1475)$	$a^{+}(a^{+}+1)$	$f_0(2200)$	$0^{+}(0^{+})$	CULE		• B _J (5970) ⁰	1/2(??)	• $\psi(+660)$	$a^{+}(a^{+} + 1)$
• / ₀ (1500)	a+(1++)	13(2220)	$(2^{+})^{+}$	CHARM	ED IV	DOTTOULO	TOANGE	$\chi_{c0}(4700)$	0 (0)
$f_1(1510)$	$0^{+}(2^{+}^{+})$	~(2225)	$n \pm (n = \pm)$	(c = 1)	.1)		TRANGE	b	b
$-7_2(1525)$	$a^{+}(2^{+})$	7(2225)	$1 \pm (2)$	• D [±]	$1/2(0^{-})$	(D = ±1, 5	- ++)	(+ passibly n	on- $q\overline{q}$ states)
⁷ 2(1565)	$1 \pm (1 = -)$	$p_3(2250)$	$n^{+}(3 + +)$	• D ^o	$1/2(0^{-})$	• B ⁰ _s	0(0-)	$\bullet n_{b}(1S)$	$0^{+}(0^{-+})$
p(1570)	$\frac{1}{2}$	• J ₂ (2300) £ (2200)	$0^{+}(2^{+})$	• D*(2007)*	$1/2(1^{-})$	• B [*] ₅	$0(1^{-})$	• T(15)	$0^{-}(1^{-})$
$n_1(1595)$	$1 = (1 = \pm)$	f4(2300)	$0^{+}(0^{+}+)$	 D[*](2010)[±] D[±](2010)[±] 	$1/2(1^{-})$	$X(5568)^{\pm}$?(?')	• Yee(1P)	$0^{+}(0^{+}+)$
• $\pi_1(1600)$	$\frac{1}{1-(1+1)}$	$f_0(2330)$	$0^+(2^++)$	• D ₀ [*] (2300) [*]	$1/2(0^+)$	• B _{\$1} (5830)°	0(1+)	• Y to (1P)	$0^{+}(1^{+}+)$
• <i>a</i> ₁ (1640)	$a^{+}(2 + +)$	• /2(2340) a.(2350)	$1 \pm (5)$	$D_0^*(2300)^{\pm}$	$1/2(0^+)$	 B[*]_{\$2}(5840)^o 	0(2+)	$\bullet h_{P}(1P)$	$0^{-}(1^{+}-)$
$7_2(1040)$	$a^{+}(2 - +)$	$f_{5}(2500)$	$a^{+}(6^{+}+1)$	• D ₁ (2420) ^o	$1/2(1^+)$	$B^{*}_{sJ}(5850)$?(?!)	• $\chi_{52}(1P)$	$0^+(2^++)$
• $\eta_2(1640)$	$0^{-}(1^{-})$	⁷ 6(2510)	0 (0)	$D_1(2420)^{\pm}$	$1/2(?^{+})$	BOTTOM C		$n_{b}(25)$	$0^{+}(0^{-}+)$
• wp(1670)	0 - (3)	OTHER	LIGHT	$D_1(2430)^{\circ}$	$1/2(1^+)$	(B = C =	: ±1)	• T(25)	$0^{-(1^{-}-)}$
• @3(10/0)	0 (5)	Further Sta	ates	• D ₂ [*] (2460) ⁰	$1/2(2^+)$	• P ⁺	0(0=)	• $T_2(1D)$	0 - (2)
				 D[*]₂(2460)[±] 	$1/2(2^+)$	$\bullet D_c$ $P_c(2C)\pm$	0(0)	• X10(2P)	0+(0++)
				$D(2550)^{\circ}$	$1/2(?^{+})$	$D_{c}(23)$	0(0)	• X61(2P)	$0^+(1^{++})$
				$D_{J}^{*}(2600)$	$1/2(?^{+})$	53 CZ		$h_b(2P)$	$0^{-(1+-)}$
				$D^{*}(2640)^{\pm}$	1/2(?')	(+ possibly non	-qq states)	• xb2(2P)	$0^+(2^{++})$
				$D(2740)^{\circ}$	$1/2(?^{+})$	$\bullet n_c(1S)$ ($0^{+}(0^{-+})$	• T(35)	$0^{-(1)}$
				$D_{3}^{*}(2750)$	$1/2(3^{-})$	• J/ψ(15) (0 - (11)	• χ _{b1} (3P)	$0^{+}(1^{+})$
				D(3000) ^o	$1/2(?^{r})$	$\bullet \chi_{c0}(1P) = 0$	0+i0++i	• X 62 (3P)	$0^+(2^{++})$
						• $\chi_{c1}(1P)$	0+(1++j	• T(45)	0-(1)
						• $h_c(1P)$ (0 - (1 + -)	• Z _b (10610)	$1^{+}(1^{+}-)$
						• $\chi_{c2}(1P)$ ($0^+(2^{++})$	 Z_b(10650) 	$1^{+}(1^{+}-)$
						• η _c (25)	0+(0-+)	T(10753)	??(1)
						• \$\$(2S)	0 -(1)	 T(10860) 	$0^{-}(1^{})$
								• T(11020)	$0^{-(1^{-})}$

Baryon Summary Table

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^P (when known) is given with each particle. For the strongly decaying particles, the J^P values are considered to be part of the names.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2^+ *** 2^- *** 2^- *** 2^+ *** 2^+ *** 2^+ *** 2^+ *** 2^+ ***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ⁺ *** 2 ⁻ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ ***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ⁻ *** 2 ⁻ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ ***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ⁻ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ ***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ⁺ *** 2 ⁺ *** 2 ⁺ *** 2 ⁺ *** ***
$N(1675) = 5/2^{-} **** \Delta(1905) = 5/2^{+} **** \Sigma(1660) = 1/2^{+} *** \Sigma(1950) *** A_{b}(6152)^{0} = 5/2^{-}$	2 ⁺ *** 2 ⁺ *** 2 ⁺ *** ***
	2+ *** 2+ *** ***
$N(1680) 5/2^+ **** \Delta(1910) 1/2^+ **** \Sigma(1670) 3/2^- **** \Xi(2030) \geq \frac{5}{2}? *** \Sigma_b 1/2^+ \Sigma_b = 1/2$	2 ⁺ *** ***
$N(1700) = 3/2^{-***} = \Delta(1920) = 3/2^{+***} = \Sigma(1750) = 1/2^{-***} = \Xi(2120) = * = \Sigma_b^* = 3/2$	***
$N(1710) = 1/2^+ **** \Delta(1930) = 5/2^- *** \Sigma(1775) = 5/2^- **** \Xi(2250) ** \Sigma_b(6097)^+$	***
$N(1720) = 3/2^+ **** \Delta(1940) = 3/2^- ** \Sigma(1780) = 3/2^+ * \Xi(2370) ** \Sigma_b(6097)^-$	
$ \begin{bmatrix} N(1860) & 5/2^+ & ** \end{bmatrix} \Delta(1950) & 7/2^+ & **** \end{bmatrix} \Sigma(1880) & 1/2^+ & ** \end{bmatrix} \Xi(2500) \qquad * \qquad \equiv_b^0, \ \Xi_b^- & 1/2^+ \\ (1860) & \pm_b^0, \ \Xi_b^- & \pm_b^0, \ \Xi_b^0, \ \Xi_b^- & \pm_b^0, \ \Xi_b^0, \$	2 ⁺ ***
$N(1875) = 3/2^{-***} \Delta(2000) = 5/2^{+**} \Sigma(1900) = 1/2^{-**} \Xi_b'(5935)^{-1/2}$	2+ ***
$N(1880) = 1/2^+ *** = \Delta(2150) = 1/2^- * = \Sigma(1910) = 3/2^- *** = \Omega^- = 3/2^+ **** = \Xi_b(5945)^0 = 3/2^+$	2+ ***
$N(1895) = 1/2^{-} **** \Delta(2200) = 7/2^{-} *** \Sigma(1915) = 5/2^{+} **** \Omega(2012)^{-}?^{-} *** \Xi_{b}(5955)^{-} 3/2$	2+ ***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	***
$\begin{bmatrix} N(1990) & 7/2^+ & ** \\ 0 & 2350 \end{bmatrix} = 5/2^- & \Sigma(2010) & 3/2^- & \Omega(2380)^- & ** \\ \Omega_b^- & 1/2 \end{bmatrix} = 1/2$	2 ⁺ ***
$N(2000) = 5/2^+ ** \Delta(2390) = 7/2^+ * \Sigma(2030) = 7/2^+ **** \Omega(2470)^- **$	
$\begin{bmatrix} N(2040) & 3/2^+ & \\ \Delta(2400) & 9/2^- & ** $	•
$\begin{bmatrix} N(2060) & 5/2^{-} & *** & \Delta(2420) & 11/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & \Delta(2750) & 12/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & \Delta(2750) & 12/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & \Delta(2750) & 12/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & **** & \Delta(2750) & 12/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & \Delta(2750) & 12/2^{+} & **** & \Sigma(2080) & 3/2^{+} & * & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & A_c^{-} & 1/2^{+} & **** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & *** & A_c^{-} & 1/2^{+} & *** & P_c(4380)^{+} \\ N(2160) & 1/2^{+} & 1/2^{+} & 1/2^{+} & 1/2^{+} & 1/2^{+} & 1/2^{+} & 1/2^{+} \\ N(2160) & 1/2^{+} &$	
$\begin{bmatrix} N(2100) & 1/2^{+} & *** & \Delta(2750) & 13/2^{-} & ** & \Sigma(2100) & 7/2^{-} & A_c(2595)^{+} & 1/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 1/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 1/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & *** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & *** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & ** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & ** & A(2050) & 15/2^{+} & ** & \Sigma(2100) & 1/2^{-} & * & A(2595)^{+} & 2/2^{-} & ** & P_c(4440)^{+} \\ N(2100) & 2/2^{-} & ** & A(2100) & 2/2^{-} & * & A(210) & 2/2^{-} & * & A(210) & 2/2^{-} \\ N(210) & 2/2^{-} & 2/2^{+}$	
$\begin{bmatrix} N(2120) & 3/2 & *** \\ N(2100) & -7/2 & - & *** \\ N(210) &$	•
$\begin{bmatrix} N(2190) & 7/2 & **** \\ N(2220) & 0/2^{\pm} & **** \\ N(2220) & 0/2^{\pm} & **** \\ N(2220) & 0/2^{\pm} & *** \\ N(2220) & 0/2^{\pm} & ** \\ N(220) & 0/2^{\pm} & ** \\ N(220) & 0/2^{\pm} & ** \\ N$	
$N(2220) = 9/2^{-1} + 444 = A = 1/2^{-1} + 1/2^{-1} + 1/2 = 2(2250) + 1/2 = A_{c}(2000)^{-1} + 5/2^{-1} + 444$	
$N(2250) = 9/2 = 100$ $N = 1/2 = 2(2455)$ $N = N_c(2500) = 3/2 = 100$ $N(2300) = 1/2^{+} ** = A(1405) = 1/2^{-} **** = \Sigma(2520) = ** = A(2940)^{+} = 3/2^{-} ***$	
$N(2500) = 1/2 + N(1400) = 1/2 + Z(2020) + N_{c}(2040) = 3/2 + N_{c}(2040) = 3/2 + N_{c}(2040) = 3/2 + N_{c}(2040) = 1/2 + N_$	
N(2570) = 5/2 $N(1500) = 5/2$ $Z(3500)$ $Z(2500) = 2/2(2500) = 1/2N(2500) = 11/2 = *** A(1600) = 1/2^+ **** \Sigma(3170) = * \Sigma_2(2520) = 3/2^+ ***$	
$N(2700) = 13/2^+ ** = A(1670) = 1/2^- **** = \Sigma_{1}(3170) = \Sigma_{2}(2800) = ***$	
$A(1690) = 3/2^{-} ****$	
$A(1710) = 1/2^+ * = 1/2^+ * * * *$	
$A(1800)$ $1/2^{-} ***$	
$A(1810)$ $1/2^+ ***$	
$A(1820) = 5/2^+ ****$	
$A(1830) 5/2^{-} **** = = (2790) 1/2^{-} ***$	
$A(1890) = 3/2^+ **** = \Xi_c(2815) = 3/2^- ***$	
$A(2000) 1/2^{-*} = = = = = = = = = = = = = = = = = = =$	
$A(2050) 3/2^{-*} = = = = = = = = = = = = = = = = = = =$	
$A(2070) 3/2^+ * = \Xi_c(3055) ***$	
$A(2080) = 5/2^{-*} * = \Xi_c(3080) ***$	
$A(2085) 7/2^+ ** = \Xi_c(3123) *$	
$\Lambda(2100)$ 7/2 ⁻ **** Ω_c^0 1/2 ⁺ ***	
$\Lambda(2110)$ 5/2 ⁺ *** $\Omega_c(2770)^0$ 3/2 ⁺ ***	
$\Lambda(2325) 3/2^{-*} \qquad \qquad \Omega_c(3000)^0 \qquad ***$	
$\Lambda(2350) 9/2^{+} *** \qquad \Omega_c(3050)^0 ***$	
$\Lambda(2585)$ ** $\Omega_c(3065)^0$ ***	
$\Omega_{c}(3090)^{0}$ ***	
$\Omega_c(3120)^0$ ***	

**** Existence is certain, and properties are at least fairly well explored.

- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
- ** Evidence of existence is only fair.
- Evidence of existence is poor.

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

LIGHT UNFLAVORED (S = C = B = 0)				STRA $(S = \pm 1, C)$	MGE = B = 0	CHARMED, S (C = S =	TRANGE	$c\overline{c}$ continued $I^{G}(J^{PC})$		
	$I^{G}(J^{PC})$		$I^{G}(J^{PC})$,	<i>I</i> (<i>J</i> ^P)	,	ľ(J [₽])	 ・ ψ(3770) 	0-(1)	
• π^{\pm}	$1^{-}(0^{-})$	• π ₂ (1670)	$1^{-}(2^{-+})$	• K [±]	$1/2(0^{-})$	• D_s^{\pm}	0(0-)	• $\psi_2(3823)$	0-(2)	
• π ⁰	$1^{-}(0^{-+})$	• $\phi(1680)$	0-(1)	• K ⁰	$1/2(0^{-})$	• D ^{**±}	0(? [?])	 ψ₃(3842) 	0-(3)	
• η	$0^{+}(0^{-+})$	 ρ₃(1690) 	1+(3)	• K ⁰ _S	$1/2(0^{-})$	• $D^*_{s0}(2317)^{\pm}$	$0(0^+)$	$\chi_{c0}(3860)$	0+(0++)	
 f₀(500) 	$0^{+}(0^{++})$	 ρ(1700) 	$1^{+}(1^{-})$	• K ⁰ 2	$1/2(0^{-})$	 D_{s1}(2460)[±] 	$0(1^+)$	• $\chi_{c1}(3872)$	$0^+(1^{++})$	
 ρ(770) 	$1^{+}(1^{-})$	• a ₂ (1700)	$1^{-}(2^{++})$	 K[*]₀(700) 	$1/2(0^+)$	• $D_{s1}(2536)^{\pm}$	$0(1^+)$	• Z _c (3900)	$1^{+}(1^{+})$	
 ω(782) 	$0^{-}(1^{-})$	• f ₀ (1710)	$0^+(0^{++})$	 K⁼(892) 	$1/2(1^{-})$	 D[*]_{e2}(2573) 	$0(2^+)$	• X(3915)	$0^+(0/2^+^+)$	
 η'(958) 	$0^+(0^{-+})$	$\eta(1760)$	$0^+(0^{-+})$	• K ₁ (1270)	$1/2(1^+)$	• $D_{s1}^{*}(2700)^{\pm}$	$0(1^{-})$	• $\chi_{c2}(3930)$	$0^+(2^+)$	
 f₀(980) 	$0^+(0^{++})$	• $\pi(1800)$	$1^{-}(0^{-+})$	• K ₁ (1400)	$1/2(1^+)$	$D_{c1}^{*}(2860)^{\pm}$	$0(1^{-})$	X(3940)	? ⁽ ?'')	
• a ₀ (980)	$1^{-}(0^{++})$	f ₂ (1810)	$0^+(2^{++})$	• K*(1410)	$1/2(1^{-})$	$D_{22}^{*}(2860)^{\pm}$	໙ ເ3−ົງ	• X(4020) [±]	1+(?!-)	
 φ(1020) 	$0^{-}(1^{-})$	X(1835)	? [?] (0 ⁻⁺)	 K₀(1430) 	$1/2(0^+)$	$D_{ef}(3040)^{\pm}$	0(??)	 ψ(4040) 	$0^{-}(1^{-})$	
• h ₁ (1170)	$0^{-}(1^{+})$	• $\phi_3(1850)$	0-(3)	 K[*]₂(1430) 	$1/2(2^+)$	- 85 ()		$X(4050)^{\pm}$	$1^{-}(?^{i+})$	
 b₁(1235) 	$1^+(1^+)$	• $\eta_2(1870)$	$0^+(2^{-+})$	K(1460)	$1/2(0^{-})$	BOTTO	M	$X(4055)^{\pm}$	$1^+(?^{!-})$	
• <i>a</i> ₁ (1260)	$1^{-}(1^{++})$	 π₂(1880) 	$1^{-}(2^{-+})$	$K_2(1580)$	$1/2(2^{-1})$	$(B = \pm$	1)	$X(4100)^{\pm}$	$1^{-}(?'')$	
 f₂(1270) 	$0^+(2^{++})$	$\rho(1900)$	$1^+(1^{})$	K(1630)	$1/2(?^{?})$	 B[±] 	$1/2(0^{-})$	• $\chi_{c1}(4140)$	$0^+(1^{++})$	
 f₁(1285) 	$0^+(1^{++})$	f ₂ (1910)	$0^{+}(2^{++})$	$K_1(1650)$	$1/2(1^+)$	• B ⁰	$1/2(0^{-})$	 ψ(4160) 	$0^{-}(1^{-})$	
 η(1295) 	$0^+(0^{-+})$	$a_0(1950)$	$1^{-}(0^{++})$	• K*(1680)	$1/2(1^{-})$	 	IXTURE	X(4160)	?!(?!!)	
 π(1300) 	$1^{-}(0^{-+})$	 f₂(1950) 	$0^{+}(2^{++})$	• K ₂ (1770)	$1/2(2^{-})$	• $B^{\pm}/B^0/B_s^0/b_s^0$	b-baryon	$Z_c(4200)$	$1^{+}(1^{+})$	

Hundreds of mesons/baryons have been observed what physics can we extract from this?

$f_1(1510)$	$0^+(1^{++})$		or 4 ⁺⁺ ⁺)	$(C = \pm$	1)	BOTTOM.	STRANGE		
• $f'_{2}(1525)$	$0^{+}(2^{++})$	$\eta(2225)$	$0^+(0^{-+})$	• D [±]	$1/2(0^{-1})$	$(B = \pm 1,$	$S = \mp 1$	b)	b
5(1565)	$0^{+}(2^{+})$	$p_3(2250)$	$1^{+}(3^{-}-)$	• D ⁰	$1/2(0^{-1})$	• E ⁰	0(0=)	(+ possibly no	on-qq states)
a(1570)	1+(1)	 f₂(2300) 	$0^{+}(2^{+}+)$	• D*(2007)0	1/2(0)	• D ₅	0(1-)	• $\eta_b(1S)$	$0^+(0^{-+})$
h(1595)	0 - (1 + -)	£(2300)	$0^{+}(4^{+}+)$	• D*(2007)	$\frac{1}{2}(1-)$	• D_s	2(2?)	 T(15) 	$0^{-}(1^{-})$
• 7:(1600)	1 - (1 - +)	£(2330)	$0^{+}(0^{+}+)$	• D*(2010)=	1/2(1)	X(5568)-	(x)	• $\chi_{b0}(1P)$	$0^+(0^{++})$
• a (1640)	1 - (1 + +)	♠ f ₀ (2340)	$0^+(2^++)$	• D ₀ (2300)*	$1/2(0^{+})$	• B ₅₁ (5830)°	0(1+)	$\bullet \chi_{b1}(1P)$	$0^{+}(1^{+})$
6(1640)	a+(2++)	a (2350)	$1 \pm (5)$	$D_{0}(2300)^{\pm}$	1/2(0)	 B[*]_{\$2}(5840)^o 	0(2+)	• $h_{\rm P}(1P)$	$0^{-}(1^{+}-1)$
72(1040)	$a^{+}(2 - +)$	$p_5(2550)$	$a^{+}(6 + +)$	• D ₁ (2420) ^o	$1/2(1^+)$	$B_{sJ}^{*}(5850)$?(?')	• Yes(1P)	$0^+(2^++)$
• $\eta_2(1045)$	$0^{-}(2^{-})$	<i>/</i> 6(2510)	0.(0)	$D_1(2420)^{\pm}$	$1/2(?^{+})$	POTTOM		$n_{1}(25)$	$\hat{0}^+(\hat{0}^-+\hat{1})$
• $\omega(1650)$	0(1)	OTHER	tight	$D_1(2430)^0$	$1/2(1^+)$			• T(25)	0 - (1)
• ω ₃ (1670)	0 (3)	Eurther St.	ates	 D[*]₂(2460)⁰ 	$1/2(2^+)$	(0 - 0	- 11/	• $T_{2}(1D)$	a = (21)
		i untilei St	ares	• $D_2^*(2460)^{\pm}$	$1/2(2^+)$	• B _c ⁺	0(0-)	-72(10)	$a^{+}(a^{+} + 1)$
				$D(2550)^{0}$	$1/2(?^{?})$	$B_c(2S)^{\pm}$	0(0-)	• $\chi_{b0}(2P)$	$a^{\pm}(1 \pm \pm)$
				D"(2600)	$1/2(?^{?})$		*	• $\chi_{61}(2P)$	a = (1 + -)
				$D^{*}(2640)^{\pm}$	$1/2(?^{?})$	$(\pm nossibly no$	$n_{-\alpha\overline{\alpha}}$ states)	$n_b(2P)$	0(1 +)
				$D(2740)^{0}$	$1/2(?^{?})$	(+ possibly ne	in gg states)	• $\chi_{b2}(2P)$	0 (2 + +)
				D*(2750)	$\frac{1}{2}(3-)$	• $\eta_c(1S)$	$0^+(0^{-+})$	• T(35)	0-(1)
				D(2000)	1/2(3)	• $J/\psi(1S)$	$0^{-}(1^{-})$	• $\chi_{b1}(3P)$	$0^+(1^+)$
				D(3000)*	1/2(?`)	• $\chi_{c0}(1P)$	$0^+(0^{++})$	• χ _{b2} (3P)	0+(2++)
						• $\chi_{c1}(1P)$	$0^{+}(1^{++})$	 T(45) 	0-(1)
						• $h_c(1P)$	$0^{-}(1^{+})$	 Z_b(10610) 	$1^+(1^{+-})$
						• X=2(1P)	$0^+(2^{++})$	 Z_b(10650) 	$1^{+}(1^{+}-)$
						• n _c (25)	$0^{+}\dot{0}^{-}+\dot{0}$	T(10753)	$?^{?}(1)$
						• \u03cb(2S)	0 - (1)	 T(10860) 	$0^{-1}(1^{-1})$
						/	- (- /	• T(11020)	$\hat{0} = \hat{1} = -\hat{1}$
								. (- (- /

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^P (when known) is given with each particle. For the strongly decaying particles, the J^P values are considered to be part of the names.

р	$1/2^{+}$	****	<i>∆</i> (1232)	3/2+	****	Σ^+	1/2+	****	Ξ°	$1/2^{+}$	****	Ξ_{cc}^{++}		***
n	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	****	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****			
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ-	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	10 10	$1/2^{+}$	***
N(1520)	3/2-	****	$\Delta(1700)$	$3/2^{-}$	****	$\Sigma(1385)$	$3/2^{+}$	****	Ξ(1620)		*	$\Lambda_b(5912)^0$	$1/2^{-}$	***
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1580)$	3/2-	*	$\Xi(1690)$		***	$A_b(5920)^0$	$3/2^{-}$	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	1/2-	***	$\Sigma(1620)$	1/2-	*	Ξ(1820)	$3/2^{-}$	***	$\Lambda_b(6146)^0$	$3/2^{+}$	***
N(1675)	5/2-	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1660)$	$1/2^{+}$	***	Ξ(1950)		***	$\Lambda_b(6152)^0$	$5/2^{+}$	***
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1670)$	3/2-	****	E(2030)	$\geq \frac{5}{2}$?	***	Σ_b	$1/2^{+}$	***
N(1700)	$3/2^{-}$	***	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1750)$	$1/2^{-}$	***	Ξ(2120)	-	*	Σ_b^*	$3/2^{+}$	***
N(1710)	$1/2^{+}$	****	$\Delta(1930)$	5/2-	***	$\Sigma(1775)$	5/2-	***	Ξ(2250)		**	$\Sigma_{b}(6097)^{+}$		***
N(1720)	$3/2^{+}$	****	$\Delta(1940)$	$3/2^{-}$	**	$\Sigma(1780)$	$3/2^{+}$	*	Ξ(2370)		**	$\Sigma_b(6097)^-$		***
N(1860)	$5/2^{+}$	**	$\Delta(1950)$	$7/2^{+}$	****	$\Sigma(1880)$	$1/2^{+}$	**	E (2500)		*	$= \frac{1}{2}, = \frac{1}{2}$	$1/2^{+}$	***
N(1875)	$3/2^{-}$	***	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1900)$	$1/2^{-}$	**				$\Xi_{h}^{\prime}(5935)^{-1}$	$1/2^{+}$	***
N(1880)	$1/2^{+}$	***	$\Delta(2150)$	1/2-	*	$\Sigma(1910)$	3/2-	***	Ω^{-}	$3/2^{+}$	****	$\Xi_{b}(5945)^{0}$	3/2+	***
N(1895)	$1/2^{-}$	****	$\Delta(2200)$	7/2-	***	$\Sigma(1915)$	5/2+	****	$\Omega(2012)^{-}$?-	***	$\Xi_{b}(5955)^{-}$	3/2+	***
N(1900)	3/2+	****	$\Delta(2300)$	9/2+	**	$\Sigma(1940)$	$3/2^{+}$	*	$\Omega(2250)^{-}$		***	$\Xi_{b}(6227)$,	***
N(1990)	$7/2^{+}$	**	$\Delta(2350)$	$5/2^{-}$	*	$\Sigma(2010)$	$3/2^{-}$	*	$\Omega(2380)^{-}$		**	Ω_{h}^{-}	$1/2^{+}$	***
W/2000)	5/2+	**	A(2300)	7/2+	*	5(2030)	7/2+	****	0(2470)-		**	U U	,	

			 			4
A(1710)	$1/2^{+}$	*	ΞÕ	$1/2^{+}$	****	
$\Lambda(1800)$	$1/2^{-}$	***	='+	$1/2^{+}$	***	
A(1810)	$1/2^{+}$	***	=0	$1/2^{+}$	***	
A(1820)	$5/2^{+}$	****	$\Xi_{c}(2645)$	$3/2^{+}$	***	
A(1830)	5/2-	****	$\Xi_{0}(2790)$	$1/2^{-1}$	***	
$\Lambda(1890)$	$3/2^{+}$	****	$\Xi_{c}(2815)$	3/2-	***	
A(2000)	$1/2^{-}$	*	$\Xi_{c}(2930)$	5,2	**	
A(2050)	3/2-	*	$\Xi_{2}(2970)$		***	
A(2070)	$3/2^{+}$	*	$\Xi_{c}(3055)$		***	
A(2080)	$5/2^{-}$	*	$\Xi_{c}(3080)$		***	
$\Lambda(2085)$	$7/2^+$	**	$\Xi_{c}(3123)$		*	
A(2100)	7/2-	****	Ω^0	$1/2^{+}$	***	
A(2110)	$5/2^{+}$	***	$O_{2}(2770)^{0}$	3/2+	***	
A(2325)	$3/2^{-}$	*	$Q_{2}(2000)^{0}$	5/2	***	
A(2350)	9/2+	***	$\Omega_{c}(3050)^{0}$		***	
A(2585)		**	$\Omega_{2}(3065)^{0}$		***	
_ 1			$Q_{2}(3090)^{0}$		***	
			$O_{-}(3120)^{0}$		***	
			122(0120)			

- **** Existence is certain, and properties are at least fairly well explored.
- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
- ** Evidence of existence is only fair.
- Evidence of existence is poor.

How is a hadron formed?

Normal hadrons

Baryon

Meson

tetra-

quasi-particle: color object

- What is the effective DoF inside hadron?
 - "colored object"
 - constituent quark
 - di-quark?
 - a mixture of exotic hadron w/ a hadron-hadron molecule
 - a hadron-hadron molecule

exotic hadrons

How can we learn effective DoF in the hadron

 Hadron spectroscopy will have the power to reveal effective DoF quark dynamics can be extracted through excited states of hadrons

to understand effective DoF in hadron

The way to reveal effective Degree of freedom in hadron

Charmed baryon spectroscopy

correlation in baryon resonance.

The detector is under construction

 The spectroscopy of charmed baryon (Baryon with one charm quark) has been proposed at J-PARC, J-PARC E50 to shed the light on diquark

E50 spectrometer

リングイメージ

チェレンコフ検出器

Anode Strip 2000 mm Cathode Strip: 2009 mm

collaboration work with LEPS2 and E16

閾値型チェレンコフ 粒子識別検出器

ドリフトチェンバー CITIROC / PETIROC2A board

MPPC amplifier

collaboration work with LEPS2 and E16

Meson-Baryon interaction

Kaonic-Nuclear cluster

- Kaon-Nucleon/kaon-Nucleons system • The feature of the system is something like, "Boson-Fermion" / "Boson-Fermion-Fermion" system,
- sticking with strong interaction.
- A couple of candidates have been investigated in the framework of "A02."
 - $\rightarrow \bar{K}N$ bound state? Λ(1405)
 - \rightarrow bound state of \bar{K} and two nucleons? • $\bar{K}NN$
 - \rightarrow bound state of \bar{K} and three nucleons? • *K*NNN

Study of the Kaonic-Nuclear cluster at J-PARC

K⁻ beams available at the J-PARC K1.8BR beamline.

A Series of experiments have been performed utilizing high-intensity

J-PARC E31 : Λ(1405) J-PARC E15 : $\bar{K}NN$ J-PARC T77 : *K*NNN?

Study of the Kaonic-Nuclear cluster at J-PARC

K⁻ beams available at the J-PARC K1.8BR beamline.

A Series of experiments have been performed utilizing high-intensity

covered by Prof. Noumi's talk

J-PARC E31 : Λ(1405)

J-PARC E15 : *KNN*

J-PARC T77 : *K*NNN?

Study of the Kaonic-Nuclear cluster at J-PARC

K⁻ beams available at the J-PARC K1.8BR beamline.

A Series of experiments have been performed utilizing high-intensity

covered by Prof. Noumi's talk

J-PARC E31 : Λ(1405)

J-PARC E15 : *KNN*

J-PARC T77 : *K*NNN?

discussed in this talk

K meson + two nucleons : $\bar{K}NN$

• Reaction ${}^{3}He(K^{-}, \Lambda p)$ for $\bar{K}NN$

missing n

π

.

Clear peak structure below *K̄NN* threshold

\bar{K} meson + three nucleons : $\bar{K}NNN$

• Reaction ${}^{3}He(K^{-}, \Lambda d)$ for $\bar{K}NNN$

\bar{K} meson + three nucleons : $\bar{K}NNN$

• Reaction ${}^{3}He(K^{-}, \Lambda d)$ for $\bar{K}NNN$

\bar{K} meson + three nucleons : $\bar{K}NNN$

• Reaction ${}^{3}He(K^{-}, \Lambda d)$ for $\bar{K}NNN$

\overline{K} meson + three nucleons : $\overline{K}NNN$

• Reaction ${}^{3}He(K^{-}, \Lambda d)$ for $\bar{K}NNN$

Similarly, clear peak structure showed up below $\bar{K}NNN$ threshold

Kaonic nuclear cluster

- Clearly, we observed $\bar{K}NN$ cluster, i.e Meson +Two fermions system
 - However, we can not determine the quantum numbers, c.f. J^{PC} etc.
- We found a hit of the existence of $\bar{K}NNN$ cluster.
 - However, we need more statistics to extract the mass and decay width of the observed state.
- Therefore, we started a new project to answer the undetermined questions above!

Future prospects for the research of Kaonic nuclei

Constructing new large acceptance detector complex

Future projects

Future prospects for the research of Kaonic nuclei

>90% solid angle coverage

Neutron detection capability

Sensitivity for proton polarization

Construction has been started (Completed in 2025)

 The project to study Kaonic-nucleus via photo reaction is in progress at SPring8-LEPS2 experiment

SPring-8 (Super Photon ring - 8GeV) (a) Hyogo, Japan

* Charged particles tracking: Acceptance : 7 - 110 degSide: Time Projection Chamber (TPC) Forward : Drift Chamber (DC x 4)

* γ-rays Acceptance : 40 - 110 degBarrel-g $1^{st} - 3^{rd}$ layer (Full : 4 layers)

* Particle Identification (p/K/p) Side: Barrel Resistive Plate Chamber (RPC) Middle : Aerogel Cherenkov Counter Forward: Forward RPC

Detector construction has been completed

Detector performance

- Photo production of $\Lambda(1405)$:
 - $\gamma + p \rightarrow \Lambda(1405) + K^{*+}$ reaction

Transition form factor $(p \rightarrow \Lambda(1405))$ can be measured which contains size information of $\Lambda(1405)$

\rightarrow we may conclude whether $\Lambda(1405)$ is a compact object or not.

Uniqueness of the measurement at the LEPS2 experiment "photon polarization"

• Photo production of $\Lambda(1405)$:

 $\gamma + p \rightarrow \Lambda(1405) + K^{*+}$ reaction

Transition form factor $(p \rightarrow \Lambda(1405))$ can be measured which contains size information of $\Lambda(1405)$ \rightarrow we may conclude whether $\Lambda(1405)$ is a compact object or not.

Uniqueness of the measurement at the LEPS2 experiment "photon polarization"

• Study of $\overline{K}NN$ via $d(\gamma, \Lambda p)$ rection

detecting final state particles (Λp) by main tracking detector, TPC

mechanism other than K^- induced reaction

Photo production $\Lambda(1405)$, $\bar{K}NN$, Pentaquark baryon at SPring-8

Photo production $\Lambda(1405)$, $\bar{K}NN$, Pentaquark baryon at SPring-8

Photo production $\Lambda(1405)$, $\bar{K}NN$, Pentaquark baryon at SPring-8

Summary

- (Detail will be discussed by Prof. Noumi)
- Physics data taking is started. : SPring-8/LEPS2-solenoid : \rightarrow new results will be delivered soon.
- New data analysis with existing data is ongoing
 - $\Lambda(1405)$: the J-PARC E31 experiment
 - : the J-PARC E15 experiment • KNN
 - *KNNN* : the J-PARC E80 experiment

 Reveal the relation between quark and hadron, hadron and nucleus hierarchy. what is the effective DoFs to describe hadron • The preparation of the experiment is in progress: J-PARC E50 experiment :

Summary

- What are we learning so far?
 - We already obtained hints about the hadron (meson) will be a
 - constituent of the matter (other than baryon) ($\Lambda(1405)$, $\bar{K}NN$, $\bar{K}NNN$ (?), etc.).
 - all states are seen very close to the threshold energy
 - \rightarrow need an investigation of whether this "threshold effect" is
 - the same effect that is seen in other hierarchies \rightarrow Universality?
 - Diquark will play a major role in a hadron, hits have already been seen in high-energy experiments/ theoretical works.
 - - \rightarrow charmed baryon spectroscopy at J-PARC will give a new insight into the topics of the hierarchical structure of matter

Summary

- What are we learning so far?
 - We already obtained hints about the hadron (meson) will be a
 - constituent of the matter (other than baryon) ($\Lambda(1405)$, $\bar{K}NN$, $\bar{K}NNN$ (?), etc.).
 - all states are seen very close to the threshold energy
 - \rightarrow need an investigation of whether this "threshold effect" is
 - the same effect that is seen in other hierarchies \rightarrow Universality?
 - Diquark will play a major role in a hadron, hits have already been seen in
 - high-energy experiments/ theoretical works.
 - \rightarrow charmed baryon spectroscopy at J-PARC will give a new insight
 - into the topics of the hierarchical structure of matter
 - we will show some new results from
 - J-PARC E50 and SPring-8 LEPS2 near future

