International Symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2022) 31 Oct. -3 Nov., 2022

Quark-cluster aspects in baryons and baryon spectroscopy at J-PARC

Hiroyuki NOUMI^{*,#} *Research Center for Nuclear Physics, Osaka University #Institute of Particle and Nuclear Studies, KEK

CONTENTS

- 1. "Diquark" in baryons
- 2. Lambda(1405), a $\overline{K}N$ system

Matter Evolution in the Universe

- Hadrons: complex system of quarks (and gluons)
- How are hadrons formed from quarks?
 - yet unanswered question
 - behavior of the Strong Interaction (QCD)

 proton
 proton

Hyperon Matter?

How does QCD build baryons?

Quark-cluster aspects in Hadrons

Constituent Quark

Quark-Diquark (Colored cluster)

Hadronic Molecule (colorless cluster)

Spectroscopy of Baryons to reveal dynamics of Constituent Quarks

"short-range" int.

 $H = K + V^{Conf} + V^{Coul} + V^{SS} + V^{LS} + \cdots$

- Diquarks (DQs)
 - Color Magnetic Interaction (≤ 0.5 fm)
 - Origin of the SS and LS forces is an open question
 - i.e. OGE vs Instanton Induced Interaction (III, KMT int.)
 - may form "BE condensate" in high-density matter
- Hadronic Molecule
 - Behavior of QCD in a long range region (\gtrsim 1fm)

Quark-cluster aspects in Hadrons

Constituent Quark

Quark-Diquark (Colored cluster)

Hadronic Molecule (colorless cluster)

Roles of Heavy Quark: to see dynamics of EDoF

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i \Box_j) (\sigma_i \Box_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$

 $V_{CMI}({}^{1}S_{0}, \overline{3}_{c}) = 1/2 * V_{CMI}({}^{1}S_{0}, 1_{c})$ [qq] [qq]

- Motion of "qq" is singled out by a heavy Q
 - Disentangle Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs in baryons
- Properties are expected to depend on a Q mass.

Internal structure of baryons in terms of EDoF © Disentangle motions of a *Diquark* by introducing different flavors

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D92 (2015) 114029

Production and Decay of Charmed Baryons

References for estimations on production cross sections:

- Reggeon Exchange: S.H. Kim, A. Hosaka, H.C. Kim, and HN, Phys.Rev. D92 (2015) 094021
- Single-quark involved process: S.H. Kim, A. Hosaka, H.C. Kim, and HN, PTEP, (2014) 103D01
- Two-quark involved process: S.I. Shim, A. Hosaka, H.C. Kim, PTEP 2020, (2020) 5, 053D01

Production and Decay of Charmed Baryons

- Introducing a finite orbital angular momentum $L \Rightarrow \text{favor } \lambda \text{-mode excitations}$
 - Establish "ud" diquark motion in baryon
- Production ratio of the HQ doublet to be L:L+1 ⇒ Spin, Parity
 - The ratio would be a measure of how "*ud*" is correlated.
- Production and Decay measurement ⇒ Branching Ratio (partial width)
 - Decay rates would be a measure of how "ud" is firmly correlated

rum

D

Production and Decay of Charmed Baryons

Decay pattern of λ mode

Decay pattern of □-mode

- Introducing a finite orbital angular momentum $L \Rightarrow \text{favor } \lambda \text{-mode excitations}$
 - Establish "ud" diquark motion in baryon
- Production ratio of the HQ doublet to be L:L+1 ⇒ Spin, Parity
 - The ratio would be a measure of how "*ud*" is correlated.
- Production and Decay measurement ⇒ Branching Ratio (partial width)
 - Decay rates would be a measure of how "ud" is firmly correlated

Extension to multi-strange baryons

*Disentangle motions of a quark pair by introducing different flavors

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D92 (2015) 114029

Expected Spectra in $K^-p \rightarrow K^{*0}\Xi^{*0}$ at 8 GeV/c

 $\times \Xi(1800)1/2$ - assumed for demo.

• Interest of ρ -mode excited states

- $\Xi(1820)3/2$ to be confirmed
- LS partner (1/2-) to be found
- Reveal us-diquark correlation

Expected Spectra in $K^-p \rightarrow K^{*0}K^+\Omega^{*-}$ at 8 GeV/c

63 nb assumed

1P states?

Physics Highlight

- 1P excited states
 - Ω(2012) J^P to be measured
 3/2-?
 - LS partner (1/2-) to be found
 - No LS splitting by CQM due to flavor symmetry
 - If a Finite LS splitting, Relativistic effect in confinement force?
- Is $\Omega(2012) : \Xi^*\overline{K}$ Molecular?

- PRD101, 094016(2020)

Expected Spectra in $K^-p \rightarrow K^{*0}K^+\Omega^{*-}$ at 8 GeV/c

Roper (2S state)?

Physics Highlight

- 2S excited states
 - Radial excitation
 - So-called Roper-like state, yet to be found
 - $\Omega(2160), \Gamma \sim 100 \text{ MeV}$ assumed in the Sim.
 - The width
 - $\propto \langle p^2 \rangle$: "Quark core" size no pion cloud
 - The excitation energy
 - Universality if it is ~400 MeV.

A. Jafar Arifi, A. Hosaka, et al., PRD103, 094003(2021) 15

Streaming DAQ system: a new standard brought you by

High-resol. TDC $32ch, 15 ps (\sigma)$ High-resol. TDC $32ch, 15 ps (\sigma)$ detector

SiTCP

FPGA

memory

MPPCs (back side)

CITIROC ASICs

FPGA

(B2TT compati)

DR3-SDRAM

入力

From MPPC(SiPM)

CIRASAME

8x8 ch. x2

AMANEQ

new architecture w/o hardware trigger

Efficiency 100%

demonstrated in test experiments: R. Honda, PTEP 2021, 123H01)

Quark-cluster aspects in Hadrons

Constituent Quark

[qq]

Q

Quark-Diquark (Colored cluster)

> Hadronic Molecule (colorless cluster)

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D92 (2015) 114029

Level structure of Lambda baryons as a function of M_{O}

Quark Model Calculation (curves) for Excitation Energy Spectra as a function of Heavy quark mass (M_Q) $Mass/spin/parity of \Lambda$, Λ_c , Λ_b observed so far are shown below: Their excitation modes (internal structure) to be clarified

*Further understanding of baryon structure though systematic change of the excitation modes in different flavors 20

Two-pole structure of $\Lambda(1405)$ in Meson-Baryon dynamics (theoretical analyses constraint by $\overline{K}N$ scat., Kaonic X-ray data, etc)

Need direct access to the $\overline{K}N$ Scat. Amp. and pole position.

Experimental Setup for E31 at J-PARC K1.8BR

Description of the $\pi\Sigma$ Spectrum w/ $\overline{K}N$ Scattering Amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}|_{\theta_n=3^\circ}$$

 $|\langle n\pi\Sigma|T_2^{I'}(\overline{K}N_2 \to \pi\Sigma)G_0T_1^{I}(\overline{K}^-N_1 \to \overline{K}n)|K^-\Phi_d\rangle|^2 \sim |T_2^{I'}(\overline{K}N \to \pi\Sigma)|^2 F_{\rm res}(M_{\pi\Sigma})$

Factorization Approximation

$$T_{2}^{I}(\bar{K}N \to \bar{K}N) = \frac{\pi}{1 - iAk_{2} + \frac{1}{2}ARk_{2}^{2}}$$

$$A: \text{ scattering length}$$

$$T_{2}^{I'}(\bar{K}N \to \pi\Sigma) = \frac{1}{\sqrt{k_{1}}}e^{i\delta_{0}}\frac{\sqrt{ImA - \frac{1}{2}|A|^{2}ImRk_{2}^{2}}}{1 - iAk_{2} + \frac{1}{2}ARk_{2}^{2}}$$

$$\delta_{0}: \text{ phase}$$

$$F_{\text{res}}(M_{\pi\Sigma}) \sim \left| \int_{0}^{\infty} dq_{N_{2}}^{3}T_{1}^{I}\frac{1}{E_{\bar{K}} - E_{\bar{K}}(q_{\bar{K}}) + i\epsilon}} \Phi_{d}(q_{N_{2}}) \right|^{2}, \quad q_{\bar{K}} + q_{N_{2}} = q_{\pi\Sigma}$$

 $\pi^+ \Sigma^- / \pi^- \Sigma^+$ (I' = 0, 1)

 $\pi^0 \Sigma^0 (I' = 0)$ $\pi^{-}\Sigma^{0}(I'=1)$

$$\frac{d\sigma}{d\Omega}(\pi^0\Sigma^0) \propto \left| -\frac{3T_1^{I=0} - T_1^{I=1}}{4\sqrt{3}} \boldsymbol{T_2^{I'=0}} \right|^2$$

$$\frac{d\sigma}{d\Omega}(\pi^{-}\Sigma^{0}) \propto \left| -\frac{T_{1}^{I=0} + T_{1}^{I=1}}{4} T_{2}^{I'=1} \right|^{2}$$

Best fit $\overline{K}N$ scattering amplitude

A pole at $(1417.7^{+6.0+1.1}_{-7.4-1.0}) + (-26.1^{+6.0+1.7}_{-7.9-2.0})i$ MeV/ c^2 $|T_2^{I'=0}(\bar{K}N \to \bar{K}N)|^2 / |T_2^{I'=0}(\bar{K}N \to \pi\Sigma)|^2 = 2.2^{+1.0+0.3}_{-0.6-0.3}$ $A^{I'=0} = (-1.12 \pm 0.11^{+0.10}_{-0.07}) + i(0.84 \pm 0.12^{+0.08}_{-0.07})$ fm $R^{I'=0} = (-0.18 \pm 0.31^{+0.08}_{-0.06}) + i(0.41 \pm 0.13^{+0.09}_{-0.09})$ fm *best fit value \pm fitting error \pm systematic error systematic errors assuming the K-p/K⁰n mass threshold 27

Two-pole structure of $\Lambda(1405)$ in Meson-Baryon dynamics (theoretical analyses constraint by $\overline{K}N$ scat., Kaonic X-ray data, etc.)

E31 result \rightarrow arXiv:2209.08254, Submitted to PLB

28

Summary

- Spectroscopy of baryons with heavy flavors provides unique opportunities to investigate dynamics of quarks, which reflects the nature of QCD in low energy.
 - "Diquarks" play a key role.
- A spectrometer system to conduct charmed baryon spectroscopy via the $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction is under developing at J-PARC.
 - To be a new platform for hadron physics at J-PARC
- A pole position of Lambda(1405) in the $\overline{K}N$ scattering amplitude measured via the $K^-d \rightarrow n(\pi\Sigma)^{I=0}$ reaction at J-PARC is found to be 1417.7 26.1*i* MeV.
 - Consistent with the so-called "two-pole" picture deduced from meson-baryon dynamics based on the chiral perturbation theory.

Extension of the J-PARC Hadron Experimental Facility - Third White Paper -

Taskforce on the extension of the Hadron Experimental Facility,

Contents

1	Executive Summary	1
2	Physics Programs at HIHR and K1.1 Beam Lines	26
3	Physics Objectives at $\pi 20$ and K10 Beam Lines	123
4	Physics and Experiment at KL2 Beam Line	215

Current and Extended Hadron Experimental Facility

Xi/Omega Baryon Spectroscopy at K10

- Intense Kaon Beam: K- 7.9M/spill@8 GeV/c (50-kW p on T2 [Au 66mm])
- RF-separated Kaon Beam: $K^{-}/\pi^{-} \sim 1:2.1@8 \text{ GeV/c} (1:2.5@10 \text{ GeV/c})$

Timeline of the Project

	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031
MR accele Upgrad	rator e	HK start construction parallel to beam operation in the first 3 years, beam-suspension in the next 2.5 years The Extension Project of Harry Events (6 years)								
Hadron Hall		Current Programs with SX Power towards 100kW				Hall Extension			xpanded Programs ith more beam lines	
COMET	Constru ction		COMET1		C	OMET2 Coi	nstruction		COI	MET2

We will start the project in FY2024

 \rightarrow We are working on getting the timeline consistent with current programs

Systematics of Qss Baryons – Ξ and Ω –

Multi-Strangeness Baryon Spectroscopy Using Missing Mass Techniques

M. Naruki and K. Shirotori, Lol submitted to the 18th J-PARC PAC in May, 2014(KEK/J-PARC-PAC 2014-4)

- Production and Decay reflect [QQ] correlation
- \checkmark Two-quark-involved reaction \rightarrow Both ρ/λ mode excitations

Expected Spectra in $K^-p \rightarrow K^{*0}\Xi^{*0}$ at 8 GeV/c X simulation: known states are included w/ BG estimated by JAM.

Many of their J^{P} have vet to be determined.

Closed-up the low-lying Ξ states

- Unexpected states in CQM?
 - $\Xi(1620)$ nearby $\Lambda \overline{K}$ threshold
 - $\Xi(1690)$ nearby $\Sigma \overline{K}$ threshold
- $Y\overline{K}$ molecular state or casp?
 - Prod. rates would be reduced.

Systematic behavior

Origin of LS forces:Vanished in Light SystemObserved in Heavy System

- A cancellation scenario in LS
 - Instanton Induced Int. (III) [KMT int.]
 - Same structure as OGE
 - Effective for only light quarks
 - $U_A(1)$ anomaly in III introduces $\Delta M(\eta' \eta)$
 - OGE + Instanton Induced Int. (III) in SS
 - No affect in SS splitting both in Baryons and Mesons
 - OGE III in LS in lighter baryons
 - S. Takeuchi, Nucl. Phys. A 642, 543 (1998).

Systematic behaviors in Excited Baryons

*Universality of "Roper Like" states: By chance or Mechanism behind them?

J-PARC HEF-ex WS, July 7-9, 2021

42

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (since Nov. 2015)

Table 1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from nextto-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint.

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. 11,12, NLO	$1424_{-23}^{+7} - i\ 26_{-14}^{+3}$	$1381^{+18}_{-6} - i\ 81^{+19}_{-8}$
Ref. 14, Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. 15, solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. 15, solution $#4$	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

$\Lambda(1405): 1405.1^{+1.3}$ MeV (Part. Listing in '22) $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar_{N}}}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^+\pi\Sigma$ J. Esmaili et al: IM Spec. of Stopped K⁻ on ⁴He R.H. Dalitz et al: \Box IM Spec. in K-p $\rightarrow \pi \pi \Sigma$ w/ M-matrix To measure $\overline{K}N$ Scattering Amp. below the $\overline{K}N$ mass thres. (J-PARC E31)

- measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\square$ reactions at a forward angle of *N*.
- ID's all the final states to decompose the I=0 and 1 amplitudes.

Fwd N	$\pi\Sigma$ mode	Isospin	Expected resonance
n	$\pi^{\pm} \Sigma^{\mp}$	0 , 1	Λ(1405) interference btw I=0 and 1 ampl's.
p	$\pi^{-}\Sigma^{0}$	1	P-wave $\Sigma^*(1385)$ to be suppressed
n	$\pi^0 \Sigma^0$	0	Λ(1405)
n, p	$\pi^- \Lambda$, $\pi^0 \Lambda$	1	For reference to confirm Isospin Relation

Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Mode separation (template fitting, Run78)

Event topology of $d(K^-, p)X_{\pi^-\Sigma^0}$

Event topology of $d(K^-, n)X_{\pi^0\Sigma^0}$

Other major process: $d(K^-, n) X_{\pi^0 \Lambda}, d(K^-, n) \overline{X_{\pi^- \Sigma^+}},$ Minor processes: $d(K^-, n) X_{\pi^0 \pi^0 \Lambda}, d(K^-, Yp) X, ...$

Extracting Scattering Amplitude

• 2-step process K^{-} N_{1} \overline{K} $\pi^{\mp,0}$ d T^{+} $\pi^{\pm,0}$

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=3^{\circ}} \sim |\langle n\pi\Sigma|T_2^{I'}(\overline{K}N_2 \to \pi\Sigma)G_0T_1^{I}(K^-N_1 \to \overline{K}n)|K^-\Phi_d\rangle|^2$$
$$\sim |T_2^{I'}(\overline{K}N \to \pi\Sigma)|^2 F_{\rm res}(M_{\pi\Sigma})$$

 N_2

Factorization Approximation

$$F_{\rm res}(M_{\pi\Sigma}) \sim \left| \int_0^\infty dq_{N_2}^3 T_1^I \frac{1}{E_{\bar{K}} - E_{\bar{K}}(q_{\bar{K}}) + i\epsilon} \Phi_d(q_{N_2}) \right|^2, q_{\bar{K}} + q_{N_2} = q_{\pi\Sigma}$$

E31: Response Function,
$$F_{res}(M_{\pi\Sigma})$$

• $F_{res}(M_{\pi\Sigma}) = \left| \int G_0(q_2, q_1) T_1 \Phi_d(q_2) d^3 q_2 \right|^2$
- $G_0(q_2, q_1) = \frac{1}{q_0^2 - q'^2 + i\varepsilon} f(q_0, q') \frac{\left(\sqrt{P_{\pi\Sigma}^2 + M_{\pi\Sigma}^2} + \sqrt{P_{\pi\Sigma}^2 + W(q')^2} \right)}{M_{\pi\Sigma} + W(q')},$
 $f(q_0, q')^{-1} = [E_1(q_0) + E_1(q')]^{-1} + [E_2(q_0) + E_2(q')]^{-1}$
Miyagawa and Haidenbauer, PRC85, 065201(2012)
- $T_1: K^- n \to K^- n \ (I = 1), K^- p \to \overline{K}^0 n (I = 0, 1) \text{ amplitude},$
Gopal et al., NPB119, 362(1977)
• $T_1(K^- n \to \overline{K}^0 n) = [f(I = 1) - f(I = 0)]/2$

Off-shell treatment :See eq.(17) in PRC94, 065205

 $-\Phi_d(q_2)$: deuteron wave function, PRC63, 024001(2001)

E31: Response Function, $F_{res}(M_{\pi\Sigma})$

 $F_{\text{res}}(M_{\pi\Sigma}) \sim p_{\pi}^{cm} p_{n}^{2} / |(E_{K^{-}} + m_{d})\beta_{n} - p_{K^{-}} \cos \theta | \times \int d\Omega_{\pi}^{cm} E_{\pi} E_{\Sigma} \left| \int q_{2} T_{1}^{I}(p_{K^{-}}, q_{N}, p_{n}, q_{\overline{K}}, \cos \theta_{n\overline{K}}; M_{\pi\Sigma}) G_{0}(q_{2}, q_{1}) \Phi_{d}(q_{2}) d^{3} q_{2} \right|^{2}$

Gopal et al., NPB119, 362(1977)

Demonstration of the T_1^I amplitude

• 1-step process

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=3^{\circ}} \sim |\langle nK^0 n | T_1^I (K^- p \to \overline{K^0} n) | K^- \Phi_d \rangle|^2$$

$$\frac{d\sigma}{dM_{\pi\Sigma}} \sim \left| \int_0^\infty dq_{N_2}^3 T_1^I \delta(p_{K^-} + p_p - p_n - p_{K^0}) \Phi_d(q_{N_2}) \right|^2$$

Demonstration for fitting data with the 1-step $K^-d \rightarrow nK^{0"}n^{"}$ reaction calculation

• Data: $d(K^-, n)\overline{K}^0n$ Ks/KL, BR(Ks->pi+-) corrected (K. Inoue)

$\overline{K}N$ Scattering Amplitude

L. Lensniak, arXiv:0804.3479v1(2008)

•
$$T_2^{I'}(\overline{K}N \to \overline{K}N) = \frac{A}{1 - iAk_2 + \frac{1}{2}ARk_2^2}$$

•
$$T_2^{I'}(\overline{K}N \to \pi\Sigma) = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2}$$

• $T_2^{I'}(\pi\Sigma \to \pi\Sigma)$

$$=\frac{e^{i\delta_0}}{k_1}\frac{\left(\sin\delta_0+iIm\left(e^{-i\delta_0}A\right)k_2-\frac{1}{2}Im\left(e^{-i\delta_0}AR\right)k_2^2\right)}{1-iAk_2+\frac{1}{2}ARk_2^2}$$

- 5 real number parameters (effective range expansion)
 - A: scattering length, R: effective range, δ_0 : phase

Fit the spectra to deduce $\overline{K}N$ scattering amplitude

Systematics of the fitting result by the assumed $\overline{K}N$ mass threshold $\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^{I'}(\overline{K}N \to \pi\Sigma)|^2 F_{\text{res}}(M_{\pi\Sigma})$

Fin.