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Superfluid Bulk Helium-4

« 4He is the only substance that remains liquid under normal pressure at
zero temperature (superfluid with condensate fraction of around 8%).

* Normal to superfluid transition at 2.17K.

Helium named after
the sun (greek “helios”).
Discovered in 1868.

Bulk liquid helium-4:
Binding energy per
particle E/N = —7K
(1K=8.6x10"°eV).

From Wikipedia



Helium Droplets =
Quantum Liquid
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N>20 energies are well described by liquid drop model with
volume and surface terms (no Coulomb, asymmetry, or pairing terms).

Rich interplay between many-body nuclear physics and quantum droplet

community [e.g., Pandharipande et al., PRL 50, 1676 (1983); Stringari et
al., JCP 87, 5021 (1987); Sindzingre et al., PRL 63, 1601 (1989)].




Helium Dimer and Trimers

1K=8.6x10"°eV

* Dimer:
« 4He-*He bound state energy E i ,or = —1.625mK. No J > 0
bound states. “He-3He does not support bound state.

« Two-body s-wave scattering length a,=170.86a,.
« Two-body effective range r = 15.2a,
(alternatively, two-body van der Waals length r,4w= 5.1a;).

e Trimer:
 Two J =0 bound states with E;; .o, = —131.8mK and
—2.65mK.
e NoJ > 0 bound states. b

Discussed later
in this talk.



Helium Dimer and Trimers

1K=8.6x10"°eV

* Dimer:
« 4He-*He bound state energy E i ,or = —1.625mK. No J > 0
bound states. “He-3He does not support bound state.

« Two-body s-wave scattering length a,=170.86a,.
« Two-body effective range r = 15.2a,
(alternatively, two-body van der Waals length r,4w= 5.1a;).

* Trimer: . Close to hard wall at
 Two J =0 bound states with E;i,,er = —13small internuclear

—2.65mK. distances is a
+ No J > 0 bound states. challenge for some
numerical
approaches: “Less
soft” than “typical”
nuclear potentials.

* Nuclear physics: Deuteron and triton. T P



Comparison With Other
Neutral Rare Gas Clusters

* 4He, "°Ne, 29Ar: composite bosons (energy scales are such that these

atoms can be considered as point particles; consider only nuclear
degrees of freedom).

* Dimer (potential minimum at 5—10a,):

»= ‘He-*He binding energy: E4iner = —1.3mK.
= 10Ne-19Ne binding energy: E imer = —20.1K.
= 20Ar-20Ar binding energy: Egimer = —101K.

“He, 40Ar, | /AT,

“ By .




Finite s-wave Scattering Length:
Universally Linked States
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Helium Trimer Excited State
is an Efimov State

BVie.te(r12) ¥ BVHete(ras) + | Three-body parameter is chosen such
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of scaled helium trimer excited state.

0 .
* True helium
L& ‘ Symbols: (ground and
5 -0.01F -.Scaled helium excited states)
=
\; Line: For the excited
£-0.02F Universa state, symbols
L;;: - ZR theory agree with line!
I Molecular system
-0.03= o1 0 ' 0.1 follows predicted
sgn(ay)|apyn./a;|? Efimov behavior.
D. Blume, Few- < >
Body Systems 56, 859 (2015) B<1 B>1




Probing Helium Trimer Excited
Efimov State

source




Probing Helium Trimer Excited
Efimov State
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He; signal contains ground state trimer *and* excited state trimer.
Laser beam ionizes trimer: Coulomb explosion of 4He; (3 ions).




Kinetic Energy Release
Measurement: Observing (‘He;)’
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The ionization is instantaneous and the He-ions are
distributed according to the quantum mechanical eigen
states of the ground and excited helium trimers.

Large r,,, ro3 and r;; correspond to small KER=1/r;,+1/ry3+1/r3,.



Reconstructing Real Space
Properties
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The excited state is eight times larger than the ground state.
Assuming an “atom-dimer geometry”, the tail can be fit to extract the
binding energy of the excited helium trimer.

Fit to experimental data yields 2.6(2)mK.

Theory 2.65mK [Hiyama et al., PRA 85, 062505 (2012)].



Normalized Structural

Properties of ‘He, angth
excited state: excited state: ground state:
theory experiment theory
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Divide all three interparticle distances by largest r;; and plot
kth atom (positive y): Corresponds to placing atoms i and
at (—1/2,0) and (1/2,0).

Ground state and excited states have distinct characteristics!!!
Message: Reconstruction of quantum mechanical trimer density.



Structural Properties: Short- and
Long-Range Characteristics

Atomic systems:

« Van der Waals universality.
* Highly repulsive short-range potential.

Which long-range behaviors “collapse”?
Which short-range behaviors “collapse”?

Strategy:
Consider different two-body potentials (realistic and effective
models), both at the physical point and at unitarity.



Different (Helium-Helium)
Interaction Potentials

Strategy: Consider different two-body potentials [realistic (Model I) and
effective models (Model Il)], both at the physical point and at unitarity.

Model |: Realistic potential with hard inner wall.
P N-1 N HFD-HE2.
CPKMJS.
Viot = Z Z Vrealistic(T}'k) TTY
J K> LM2M2

Unitarity realized by applying overall scaling factor.

Model Il: Effective low-energy potential model.

N-1 N N-2N-1 N matched to
Vtot = z z Vz,gauss(T}'k) + S“ S“ S: V3,gauss(Rjkl) HFD-HE2 and
j=1 k>j j=1 k>j I>k scaled-HFD-HE2.

See Kievsky et al., PRA 96, 040501 (2017); PRA 102, 063320 (2020):
2-body range and depth — s-wave scattering length and effective range.
3-body range and depth — three- and four-body energy.



“Hey: Nt" Atom Relative to
Center-of-Mass of N-1 Atoms
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Results obtained using forward walking: Reynolds et al., J. Stat. Phys. 43, 1017 (1986).



Pair Distribution Function
P@(r)for N =2 — 10
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P)(r), Two-Body Contact C,(VZ),
van der Waals Universality

N—-1 N 5
r k —7 N N

\(w —1) Zkz r | / P\ (ryrfar =1 | PP (r) = Cy Py (1)
% =46.95for 3, | Gauss
Tvdw =
HFD-HE2. L /
% =33.63 for (_/ .
Tvaw - r/ rvdw ?
CPKMJS.

See Naidon et al., PRL 112, 105301
(2014); PRA 90, 022106 (2014) for vdW
universality of trimer at unitarity.

r/ fudw See Kim et al., Annu.

Pvaw(r) =

vdw

as

B|T(5/4)z'2], 4(2272)

U(3/4)22J_1/4(2272)

Rev. Nucl. Sci. 24, 96
Flambaum et al., PRA 59, 1998 (1999). (1974): “asymptotic
Gao, PRA 58, 4222 (1998). normalization constant”



Three-Body (Sub-Cluster)
Correlationsfor N =3 - 10
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Next: Dynamics of Dimer

Prepare universal
initial state (i.e.,
state that is
dominated by s-
wave scattering
length).

Interrogate the
initial state: fast
and intense pump
laser that takes the
system out of
equilibrium.

Wait for a variable time
(delay) and apply even
shorter and more
intense probe laser that
allows us to look at
time-evolved system.




Next: Dynamics of Dimer

Sort of like...

pany

From vectorstock.com

Prepare universal
initial state (i.e.,
state that is
dominated by s-
wave scattering
length).

Interrogate the
initial state: fast
and intense pump
laser that takes the
system out of
equilibrium.

Wait for a variable time

(delay) and apply even
shorter and more

intense probe laser that

allows us to look at
time-evolved system.
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The neutron-rich *He and ®He isotopes exhibit an exotic nuclear structure that consists of a tightly
bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo.
Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare
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Pump-Probe Spectroscopy of
Isolated Helium Dimers

Pump pulse: pulse length of 311 fs and intensity of 1.3 x 10" W/cm?Z.
Probe pulse rips off two electrons (Coulomb explosion).
What do we expect to happen as a function of the delay time???



What Does The Pulse Do To
Helium Dimer?

<(30329> =%

l molecule

laser polarization

Without the laser, the
molecule is spherically
symmetric (no alignment):
The helium dimer has
vanishing relative orbital
angular momentum.

<c:0329> >% <cos2(9> : <00320> <%

| —

(positive) anti-
alignment alignment

Will show: Helium dimer can be aligned.
However, since the J > 0 partial wave
components are not bound, they will
“run away” (dissociative wave packet).
Heavier non-universal dimers behave
very differently.



‘He-*He In Time-Dependent
Electric Field

In what follows, the initial state will be the ] =0
eigenstate of the zero-field Hamiltonian of 4He-
4He system.

Scenario 1 (non-adiabatic laser kick):
g(t) = gy exp (—2 In2 (

40

Vi, R [K]

-20

Scenario 2 (“slow”): Gaussian turn-on,
hold for several ps, Gaussian turn-off.
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Solve time-
dependent
Schroedinger
equation using
spherical
coordinates:
W(R,0,t)

w; (R, t)

:Z:R

J=0.2,...
Laser couples
different partial
waves.

When laser is off,
the channels are

Y;o(R)

.. |decoupled.
timein ps




Scenario 1: Theory Result

[ U*(R,0,t) cos® O¥(R, 0, t) sin 6d6
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Interference between J=0 and J=2 partial
waves. J=2 portion “travels” on structureless
background.

Solve time-
dependent
Schroedinger
equation using
spherical
coordinates:
w(R,0,t)

= Z (RO Y;0(R)

J=0.2,... R
Pulse couples
different partial
waves.

When pulse is off,
the channels are
decoupled.
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Kicking the “He Dimer

For the first time: Intense laser used to probe dynamics at single-atom
level using universal, scattering length dominated initial state.

“Rotationless” 4He dimer can be aligned! Note, it’s the continuum
portion of the wave packet...

Pattern due to interference between J=0 and J=2 channels:
Measurement of spatially and time dependent relative phase between
these two partial wave channels. State tomography!

Many outstanding challenges:

Resonances as in ultracold atoms? Need longer pulses...
Time-dependent modulation of interaction strength?
Dynamics of (Efimov) trimers? Need to populate it first...
Larger clusters.



Scenario 2: Longer Pulses

Jo ¥*(R,0,t) cos® 0¥ (R, 0,t)sin6d0  max. intensity
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Fingerprint of revivals in time-dependent response of system: Dimer oscillates
between electric field-induced deeply-bound state and weakly-bound state.



Summary

4Heyp droplets can be realized experimentally in size-selective
manner.

Access to structural properties (accessing real-space structures
beyond N=3 is non-trivial due to reconstruction algorithm).

4Hej: Ground state has Efimov characteristics and excited state is

Efimov trimer (s-wave scattering length and three-body
parameter).

Some aspects of 4He clusters well described by effective low-
energy model.

4‘He,: Alignment of dissociate wave packet portion.



Thank You!



