

Loosely bound van der Waals clusters

Doerte Blume Center for Quantum Research and Technology (CQRT) Department of Physics and Astronomy The University of Oklahoma, Norman.

Collaborators: Qingze Guan, AJ Yates, Maksim Kunitski, Reinhard Doerner and group.

Supported by the NSF.

Superfluid Bulk Helium-4

- ⁴He is the only substance that remains liquid under normal pressure at zero temperature (superfluid with condensate fraction of around 8%).
- Normal to superfluid transition at 2.17K.

```
Helium named after
the sun (greek "helios").
Discovered in 1868.
```

Bulk liquid helium-4: Binding energy per particle E/N = -7K(1 K = 8.6 x 10⁻⁵ eV).

From Wikipedia

Helium Droplets = Quantum Liquid

N>20 energies are well described by liquid drop model with volume and surface terms (no Coulomb, asymmetry, or pairing terms).

Rich interplay between many-body nuclear physics and quantum droplet community [e.g., Pandharipande et al., PRL 50, 1676 (1983); Stringari et al., JCP 87, 5021 (1987); Sindzingre et al., PRL 63, 1601 (1989)].

Helium Dimer and Trimers

 $1 \text{ K} = 8.6 \times 10^{-5} \text{ eV}$

- Dimer:
 - ⁴He-⁴He bound state energy E_{dimer} = -1.625mK. No J > 0 bound states. ⁴He-³He does not support bound state.
 - Two-body s-wave scattering length $a_s = 170.86a_0$.
 - Two-body effective range $r_{eff} = 15.2a_0$ (alternatively, two-body van der Waals length $r_{vdW} = 5.1a_0$).
- Trimer:
 - Two J = 0 bound states with $E_{trimer} = -131.8$ mK and -2.65mK.
 - No J > 0 bound states.

Discussed later in this talk.

Helium Dimer and Trimers

 $1 \text{ K} = 8.6 \times 10^{-5} \text{ eV}$

- Dimer:
 - ⁴He-⁴He bound state energy E_{dimer} = -1.625mK. No J > 0 bound states. ⁴He-³He does not support bound state.
 - Two-body s-wave scattering length $a_s = 170.86a_0$.
 - Two-body effective range $r_{eff} = 15.2a_0$ (alternatively, two-body van der Waals length $r_{vdW} = 5.1a_0$).
- Trimer:
 - Two J = 0 bound states with $E_{trimer} = -2.65 \text{mK}$.
 - No J > 0 bound states.

Nuclear physics: Deuteron and triton.

Close to hard wall at small internuclear distances is a challenge for some numerical approaches: "Less soft" than "typical" nuclear potentials.

in this talk.

Comparison With Other Neutral Rare Gas Clusters

- ⁴He, ¹⁰Ne, ²⁰Ar: composite bosons (energy scales are such that these atoms can be considered as point particles; consider only nuclear degrees of freedom).
- Dimer (potential minimum at 5–10a₀):
 - ⁴He-⁴He binding energy: E_{dimer} = −1.3mK.
 - ¹⁰Ne-¹⁰Ne binding energy: E_{dimer} = -20.1K.
 - ²⁰Ar-²⁰Ar binding energy: E_{dimer} = −101K.

Finite s-wave Scattering Length: Universally Linked States

Helium Trimer Excited State is an Efimov State

Probing Helium Trimer Excited Efimov State

Probing Helium Trimer Excited Efimov State

He₃ signal contains ground state trimer *and* excited state trimer. Laser beam ionizes trimer: Coulomb explosion of ⁴He₃ (3 ions).

Kinetic Energy Release Measurement: Observing (⁴He₃)^{*}

kinetic energy release (KER) in eV (log scale)

The ionization is instantaneous and the He-ions are distributed according to the quantum mechanical eigen states of the ground and excited helium trimers. Large r_{12} , r_{23} and r_{31} correspond to small KER=1/ r_{12} +1/ r_{23} +1/ r_{31} .

Reconstructing Real Space Properties

The excited state is eight times larger than the ground state. Assuming an "atom-dimer geometry", the tail can be fit to extract the binding energy of the excited helium trimer. Fit to experimental data yields 2.6(2)mK. Theory 2.65mK [Hiyama et al., PRA 85, 062505 (2012)].

Normalized Structural Properties of ⁴**He**₃

Divide all three interparticle distances by largest r_{ij} and plot k^{th} atom (positive y): Corresponds to placing atoms i and j at (-1/2,0) and (1/2,0).

Ground state and excited states have distinct characteristics!!! Message: Reconstruction of quantum mechanical trimer density.

Structural Properties: Short- and Long-Range Characteristics

Atomic systems:

- Van der Waals universality.
- Highly repulsive short-range potential.

Which long-range behaviors "collapse"? Which short-range behaviors "collapse"?

Strategy:

Consider different two-body potentials (realistic and effective models), both at the physical point and at unitarity.

Different (Helium-Helium) Interaction Potentials

Strategy: Consider different two-body potentials [realistic (Model I) and effective models (Model II)], both at the physical point and at unitarity.

Model I: Realistic potential with hard inner wall.

$$V_{tot} = \sum_{j=1}^{N-1} \sum_{k>j}^{N} V_{realistic}(r_{jk})$$

$$TTY.$$

$$LM2M2.$$

Unitarity realized by applying overall scaling factor.

Model II: Effective low-energy potential model.

$$V_{tot} = \sum_{j=1}^{N-1} \sum_{k>j}^{N} V_{2,gauss}(r_{jk}) + \sum_{j=1}^{N-2} \sum_{k>j}^{N-1} \sum_{l>k}^{N} V_{3,gauss}(R_{jkl}) \xrightarrow{\text{matched to}} HFD-HE2 \text{ and} \\ \text{scaled-HFD-HE2.}$$

See Kievsky et al., PRA 96, 040501 (2017); PRA 102, 063320 (2020): 2-body range and depth \rightarrow s-wave scattering length and effective range. 3-body range and depth \rightarrow three- and four-body energy.

⁴He_N: Nth Atom Relative to Center-of-Mass of N-1 Atoms

Results obtained using forward walking: Reynolds et al., J. Stat. Phys. 43, 1017 (1986).

Pair Distribution Function $P^{(2)}(r)$ for N = 2 - 10

$P^{(2)}(r)$, Two-Body Contact $C_N^{(2)}$, van der Waals Universality

Three-Body (Sub-Cluster) Correlations for N = 3 - 10

Next: Dynamics of Dimer

Prepare universal initial state (i.e., state that is dominated by swave scattering length). Interrogate the initial state: fast and intense pump laser that takes the system out of equilibrium. Wait for a variable time (delay) and apply even shorter and more intense probe laser that allows us to look at time-evolved system.

Next: Dynamics of Dimer

Pump-Probe Spectroscopy of Isolated Helium Dimers

Pump pulse: pulse length of 311 fs and intensity of 1.3×10^{14} W/cm². Probe pulse rips off two electrons (Coulomb explosion). What do we expect to happen as a function of the delay time???

What Does The Pulse Do To Helium Dimer?

 $\langle cos^2\theta \rangle = \frac{1}{3}$ θ molecule laser polarization

Without the laser, the molecule is spherically symmetric (no alignment): The helium dimer has vanishing relative orbital angular momentum.

Will show: Helium dimer can be aligned. However, since the J > 0 partial wave components are not bound, they will "run away" (dissociative wave packet). Heavier non-universal dimers behave very differently.

⁴He-⁴He In Time-Dependent Electric Field

In what follows, the initial state will be the J = 0 eigenstate of the zero-field Hamiltonian of ⁴He-⁴He system.

Scenario 1 (non-adiabatic laser kick): $\varepsilon(t) = \varepsilon_0 \exp\left(-2 \ln 2 \left(\frac{t-t_{ref}}{\tau}\right)^2\right); \tau \approx 300$ fs. 3.0 flux (a) 2.5 V_{eff,1}(R) [K] 20 2.0 Φ 1.5 1.0 2.5×10¹⁴ 0.5 -20 <u></u> 2.0×10^{14} 0.0 8 2 3 5 1.5×10^{14} R [Å] R [Å] 1.0×10¹⁴ Scenario 2 ("slow"): Gaussian turn-on, 50x103

hold for several ps, Gaussian turn-off.

Solve timedependent Schroedinger equation using spherical coordinates: $\Psi(\mathbf{R}, \boldsymbol{\theta}, t)$ $\underline{u_J(R,t)}$ *I*=0.2.... Laser couples different partial waves. When laser is off, the channels are decoupled.

time in ps

Scenario 1: Theory Result

 $C_2(R,t) = \frac{\int_0^\pi \Psi^*(R,\theta,t) \cos^2 \theta \Psi(R,\theta,t) \sin \theta d\theta}{\int_0^\pi |\Psi(R,\theta,t)|^2 \sin \theta d\theta}$

Interference between J=0 and J=2 partial waves. J=2 portion "travels" on structureless background.

Solve timedependent Schroedinger equation using spherical coordinates: $\Psi(\mathbf{R}, \boldsymbol{\theta}, t)$ $= \sum \frac{u_J(R,t)}{R} Y_{J0}(\widehat{R})$ *I*=0.2.... **Pulse couples** different partial waves. When pulse is off, the channels are decoupled.

Kicking the ⁴He Dimer

For the first time: Intense laser used to probe dynamics at single-atom level using universal, scattering length dominated initial state.

"Rotationless" ⁴He dimer can be aligned! Note, it's the continuum portion of the wave packet...

Pattern due to interference between J=0 and J=2 channels: Measurement of spatially and time dependent relative phase between these two partial wave channels. State tomography!

Many outstanding challenges:

Resonances as in ultracold atoms? Need longer pulses... Time-dependent modulation of interaction strength? Dynamics of (Efimov) trimers? Need to populate it first... Larger clusters.

Scenario 2: Longer Pulses

Fingerprint of revivals in time-dependent response of system: Dimer oscillates between electric field-induced deeply-bound state and weakly-bound state.

Summary

- ⁴He_N droplets can be realized experimentally in size-selective manner.
- Access to structural properties (accessing real-space structures beyond N=3 is non-trivial due to reconstruction algorithm).
- ⁴He₃: Ground state has Efimov characteristics and excited state is Efimov trimer (s-wave scattering length and three-body parameter).
- Some aspects of ⁴He_N clusters well described by effective lowenergy model.
- ⁴He₂: Alignment of dissociate wave packet portion.

Thank You!