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/274Ultracold Fermi Gas

Powerful tool to experimentally study strongly correlated quantum many-body systems

https://ultracold.phys.virginia.edu/public_html/
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図 1.8. Feshbach 共鳴を表した模式図。2 つの異なる擬スピン状態 (超微細構造) の Fermi 原子が
衝突し、共鳴分子ボソン (Feshbach分子)を形成する。このときに生じる原子間相互作用を、外部
磁場により実験的に制御することができる。

ンシャル差は電極間の電位差にそれぞれ対応する。冷却原子気体とは異なり、電子系の
場合には電子間引力相互の大きさを制御することは容易でないが、系のキャリア数密度
や次元性を変化させることで実効的に BCS-BEC クロスオーバーが実現できる可能性
が指摘されており、近年 FeSe などの鉄系超伝導体や ZrNCl、有機超伝導体 κ-(BEDT-

TTF)4Hg2.89Br8 において実験的に観測されている [61–65]。この実験技術を応用すれ
ば、電圧が印加された超伝導体でも非平衡 BCS-BEC クロスオーバーを実験的に調べら
れると期待される。
1.2.2 Feshbach共鳴を有する駆動散逸冷却 Fermi原子気体における BCS-

BECクロスオーバー
Feshbach共鳴とは、図 1.8に示すように、2つの異なる擬スピン状態 (超微細構造)の
原子が散乱する際、共鳴束縛状態として Feshbach分子が形成される現象である [66–68]。
このとき生じる原子間相互作用は、外部磁場により引力、斥力共に幅広い範囲でその強度
を実験的に制御することができる [66–71]。熱平衡冷却 Fermi原子気体では、この可変な
原子間引力相互作用により、BCS-BECクロスオーバーと呼ばれる強相関量子多体現象が
実現している [41–49]。これは、Fermi 原子間の引力相互作用が強くなるにつれ、Fermi

面の存在により生じる Cooper対による超流動 (金属超伝導における BCS状態に対応)か
ら、超流動転移温度以上で形成された分子ボソンによる BECへと連続的に移行する現象
である (図 1.9参照)。これにより、金属超伝導に代表される「Fermi粒子系の超流動」と
超流動 4Heに代表される「Bose粒子系の超流動」を統一的な視点で捉えることが可能に
なり、さらに両者の中間領域 (BCS-BEC クロスオーバー領域)での強相関物性の解明と
いう新たな研究対象も生まれた [72, 73]。
熱平衡冷却 Fermi原子気体の BCS-BECクロスオーバー領域での超流動転移温度 Tc の
定性的な振る舞いは図 1.9のようであるが、これは次のように理解される：引力相互作用
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Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on SχB patterns.

and sets a natural scale for the critical temperature of
chiral restoration. In the chiral perturbation theory (χPT)
the chiral condensate for two massless quark flavours at
low temperature is known to behave as 〈ψ̄ψ〉T /〈ψ̄ψ〉 =
1 − T 2/(8f 2

π ) − T 4/(384f 4
π ) − · · · with the pion decay

constant fπ $ 93 MeV [29]. Although the validity of
χPT is limited to low temperature, this is clear evidence
of the melting of chiral condensate at a finite temperature.
At low baryon density, likewise, the chiral condensate
decreases as 〈ψ̄ψ〉nB/〈ψ̄ψ〉 = 1 − σπN nB/(f 2

π m2
π )− · · ·

[30–32] where σπN ∼ 40 MeV is the π–N sigma term.
(For higher order corrections, see [33, 34].)
The chiral transition is a notion independent of the
deconfinement transition. In section 3.2 we classify the
chiral transition according to the SχB pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the
phase structure of QCD matter including conjectures which
are not fully established. At present, relatively firm statements
can be made only in limited cases—phase structure at a finite
T with a small baryon density (µB & T ) and that at an
asymptotically high density (µB ' %QCD). Below we will
take a closer look at figure 1 from a smaller to larger value of
µB in order.

Hadron-quark phase transition at µB = 0. The QCD phase
transition at finite temperature with zero chemical potential
has been studied extensively in the numerical simulation on
the lattice. Results depend on the number of colours and
flavours as expected from the analysis of effective theories
on the basis of the renormalization group together with the
universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the
finite-size scaling analysis on the lattice [37], and the critical
temperature is found to be Tc $ 270 MeV. For Nf > 0

light flavours it is appropriate to address more on the chiral
phase transition. Recent analyses on the basis of the staggered
fermion and Wilson fermion indicate a crossover from the
hadronic phase to the quark–gluon plasma for realistic u, d
and s quark masses [38, 39]. The pseudo-critical temperature
Tpc, which characterizes the crossover location, is likely to be
within the range 150–200 MeV as summarized in section 4.2.

Even for the temperature above Tpc the system may be
strongly correlated and show non-perturbative phenomena
such as the existence of hadronic modes or pre-formed
hadrons in the quark–gluon plasma at µB = 0 [28, 40]
as well as at µB (= 0 [41–43]. Similar phenomena can
be seen in other strong-coupling systems such as the high-
temperature superconductivity and in the BEC regime of
ultracold fermionic atoms [44].

QCD critical points. In the density region beyond µB ∼ T
there is no reliable information from the first-principles lattice
QCD calculation. Investigation using effective models is a
pragmatic alternative then. Most of the chiral models suggest
that there is a QCD critical point located at (µB = µE, T = TE)
and the chiral transition becomes first order (crossover) for
µB > µE (µB < µE) for realistic u, d and s quark masses
[45–48] (see point E in figure 2). The criticality implies
enhanced fluctuations, so that the search for the QCD critical
point is of great experimental interest [49, 50].

There is also a possibility that the first-order phase
boundary ends at another critical point in the lower-T and
higher-µB region whose location we shall denote by (µF, TF)
as shown by point F in figure 2. As discussed in section 6,
the cold dense QCD matter with three degenerate flavours
may have no clear border between superfluid nuclear matter
and superconducting quark matter, which is called the quark–
hadron continuity.

In reality, the fate of the above critical points (E and F)
depends strongly on the relative magnitude of the strange quark
mass ms and the typical values of T and µB at the phase
boundary.

3

Quark MatterUltracold Fermi Gas Nuclear Matter

2SC 

(2-flavor superconductor)

Neutron Star

https://astronomy.com/news/2020/03/
how-big-are-neutron-stars

Δ(x) = Δ0

Bardeen, Cooper, Schrieffer (1957)

Uniform Fermi superfluid  (BCS state)
(low density) (2SC)



/276Non-uniform Superconductivity in Different Hierarchies

Q ≠ 0

σ = ↓

σ = ↑

Q ≠ 0

d-quark

u-quark

Q ≠ 0

Mismatched Fermi surfaces

Δ(x) = Δ0eiQx

Fulde, Ferrell (1964)

Δ(x) = Δ0 cos(Qx)
Larkin, Ovchinnikov (1965)

Non-uniform Fermi superfluid  (FFLO state)

neutron

proton

Isospin asymmetrySpin imbalance Electrical and color neutrality

p

K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011)

Attractive Interaction Strength

Te
m

pe
ra

tu
re

 T

Fermi liquid
Molecular 

Bose gas

Superfluid

Tc

Rep. Prog. Phys. 74 (2011) 014001 K Fukushima and T Hatsuda

Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on SχB patterns.
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The chiral transition is a notion independent of the
deconfinement transition. In section 3.2 we classify the
chiral transition according to the SχB pattern.
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Figure 1 summarizes our state-of-the-art understanding on the
phase structure of QCD matter including conjectures which
are not fully established. At present, relatively firm statements
can be made only in limited cases—phase structure at a finite
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take a closer look at figure 1 from a smaller to larger value of
µB in order.

Hadron-quark phase transition at µB = 0. The QCD phase
transition at finite temperature with zero chemical potential
has been studied extensively in the numerical simulation on
the lattice. Results depend on the number of colours and
flavours as expected from the analysis of effective theories
on the basis of the renormalization group together with the
universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the
finite-size scaling analysis on the lattice [37], and the critical
temperature is found to be Tc $ 270 MeV. For Nf > 0

light flavours it is appropriate to address more on the chiral
phase transition. Recent analyses on the basis of the staggered
fermion and Wilson fermion indicate a crossover from the
hadronic phase to the quark–gluon plasma for realistic u, d
and s quark masses [38, 39]. The pseudo-critical temperature
Tpc, which characterizes the crossover location, is likely to be
within the range 150–200 MeV as summarized in section 4.2.

Even for the temperature above Tpc the system may be
strongly correlated and show non-perturbative phenomena
such as the existence of hadronic modes or pre-formed
hadrons in the quark–gluon plasma at µB = 0 [28, 40]
as well as at µB (= 0 [41–43]. Similar phenomena can
be seen in other strong-coupling systems such as the high-
temperature superconductivity and in the BEC regime of
ultracold fermionic atoms [44].

QCD critical points. In the density region beyond µB ∼ T
there is no reliable information from the first-principles lattice
QCD calculation. Investigation using effective models is a
pragmatic alternative then. Most of the chiral models suggest
that there is a QCD critical point located at (µB = µE, T = TE)
and the chiral transition becomes first order (crossover) for
µB > µE (µB < µE) for realistic u, d and s quark masses
[45–48] (see point E in figure 2). The criticality implies
enhanced fluctuations, so that the search for the QCD critical
point is of great experimental interest [49, 50].

There is also a possibility that the first-order phase
boundary ends at another critical point in the lower-T and
higher-µB region whose location we shall denote by (µF, TF)
as shown by point F in figure 2. As discussed in section 6,
the cold dense QCD matter with three degenerate flavours
may have no clear border between superfluid nuclear matter
and superconducting quark matter, which is called the quark–
hadron continuity.

In reality, the fate of the above critical points (E and F)
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The FFLO state has not been observed experimentally in a 2D and 3D Fermi gas.

Theory (Mean-field approximation)
M. M. Parish et. al., Nature Physics 3, 124 (2007)
G. C. Strinati et. al., Phys. Rep. 738, 1 (2018)

⋮

Spin-imbalanced Fermi gas ( )N↑ ≠ N↓

(N↑ > N↓) P = [N↑ − N↓]/[N↑ + N↓]
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In isotropic systems, the FFLO-type non-uniform superfluid state is unstable against pairing fluctuations at nonzero temperature 

even in a 3D system. -  H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998) 

-  Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002)
-  J. Wang et. al., Phys. Rev. B 97, 134513 (2018)
-  P. Zdybel et. al., Phys. Rev. A 104, 063317 (2021) 

⋮

Large fluctuations caused by an infinite degeneracy 

with respect to the direction of the FFLO  vector

destroy the FFLO-type long-range order.
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In isotropic systems, the FFLO-type non-uniform superfluid state is unstable against pairing fluctuations at nonzero temperature 

even in a 3D system. -  H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998) 

-  Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002)
-  J. Wang et. al., Phys. Rev. B 97, 134513 (2018)
-  P. Zdybel et. al., Phys. Rev. A 104, 063317 (2021) 

⋮

Explicitly breaking 

the continuous rotational symmetry Atom

Laser

Periodic potential made by optical interference
http://www.kozuma.phys.titech.ac.jp/
research_category/entry7.html
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Phase separation (BCS + Normal)
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Q = 0

Difficulty (II) :  Competition with phase separation (BCS+Normal)

In a spin-imbalanced Fermi gas, phase separation into the BCS uniform superfluid and the polarized normal gas can occur.
P. F. Bedaque et. al., PRL 91, 247002 (2003)

⋮

For a partially superfluid imbalanced mixture, a shell
structure was observed in the in situ phase-contrast image
(Fig. 2). Since the image shows the column density differ-
ence (the 3D density difference integrated along the y
direction of the imaging beam), the observed depletion in
the center indicates a 3D shell structure with even stronger
depletion in the central region. The size of this inner core
decreases for increasing imbalance, and the core shows a
distinctive boundary until it disappears for large imbal-
ance. We observe this shell structure even for very small
imbalances, down to 5!3"%, which excludes a homogene-
ous superfluid state at this low imbalance, contrary to the
conclusions in Ref. [6].

The reconstructed 3D profile of the density difference
shows that the two components in the core region have
equal densities. We reconstruct 3D profiles from the 2D
distributions ~nd!x; z" of the column density difference us-
ing the inverse Abel transformation (Fig. 3) [20]. The
reconstruction does not depend on the validity of the local
density approximation (LDA) or a harmonic approxima-

tion for the trapping potential [12,21,22] and assumes only
cylindrical symmetry of the trap. The two transverse trap
frequencies are equal to better than 2% [15]. A 1D profile
obtained by integrating ~nd along the axial direction
[Fig. 3(d)] shows a flattop distribution, which is the ex-
pected outcome for a shell structure with an empty inner
region in a harmonic trap and assuming LDA.

The presence of a core region with equal densities for
the two components was correlated with the presence of a
pair condensate. The density difference at the center nd0
along with the condensate fraction is shown as a function
of the imbalance ! in Fig. 4. As shown, there is a critical
imbalance !c where superfluidity breaks down due to large
imbalance [5,7]. In the superfluid region, i.e., !< !c, nd0
vanishes, and for !> !c, nd0 rapidly increases with a
sudden jump around ! # !c. We observe a similar behav-
ior throughout the strongly interacting regime near the
Feshbach resonance, $0:4< 1=kFa < 0:6. This observa-
tion clearly demonstrates that for this range of interactions
a paired superfluid is spatially separated from a normal
component of unequal densities.

The shell structure is characterized by the radius of the
majority component, the radial position Rp of the peak in
nd! ~r", the size Rc of the region where nd is depleted, and
the ‘‘visibility’’ " of the core region (Fig. 5). The sudden
drop of " around ! # !c results from the sudden jump of
nd0. The comparison between Rp and Rc shows that the
boundary layer between the superfluid and the normal
region is rather thin. It has been suggested that the detailed
shape of profiles in the intermediate region could be used
to identify exotic states such as the Fulde-Ferrell-Larkin-
Ovchinnikov state [23–25]. This will be a subject of future
research.

FIG. 2. In situ direct imaging of trapped Fermi gases for
various population imbalance !. The integrated 2D distributions
of the density difference ~nd!x; z" %

R
nd!~r"dy were measured

using phase-contrast imaging at B & 834 G for total atom num-
ber Nt # 1' 107. For ! ( 75%, a distinctive core was observed
showing the shell structure of the cloud. The field of view for
each image is 160 #m' 800 #m. The three leftmost images are
displayed with different contrast levels for clarity. The image
with ! & 5!3"% was taken for Nt # 1:7' 107.

FIG. 3. Reconstruction of 3D distributions from their inte-
grated 2D distributions. (a) An integrated 2D distribution ~nd
with ! & 58% at B & 834 G. (b) A less noisy distribution was
obtained by averaging four quadrants with respect to the central
dashed lines in (a). (d) The 1D profile obtained by integrating the
averaged distribution along the z direction shows the ‘‘flattop’’
feature. (c) The 2D cut nd!x; y & 0; z" of the 3D distribution
nd!~r" was reconstructed by applying the inverse Abel trans-
formation to (b). (e) The radial profile of the central section of
the reconstructed 3D distribution in the xy plane. The dashed
lines in (d) and (e) are fits to the profiles’ wings using a TF
distribution.

FIG. 1. Phase-contrast imaging of the density difference of
two spin states. (a) The probe beam is tuned to the red for the
j1i ! jei transition and to the blue for the j2i ! jei transition.
The resulting optical signal in the phase-contrast image is
proportional to the density difference nd % n1 $ n2, where n1

and n2 are the densities of the states j1i and j2i, respectively.
(b) Phase-contrast images of trapped atomic clouds in state j1i
(left) and state j2i (right) and of an equal mixture of the two
states (middle).

PRL 97, 030401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JULY 2006

030401-2

This content downloaded from 131.113.213.130 on Mon, 08 Nov 2021 06:49:12 UTC
All use subject to https://about.jstor.org/terms

Y. Shin et.al., PRL 97, 

030401 (2006)

G. B. Partridge et.al., Science 311, 

5760 (2006)

‣  Rice (2006)

‣  MIT (2006)

Thus, even if the destruction of the FFLO state by pairing fluctuations can be removed in an optical lattice, we still need to overcome the 
competition between the FFLO state and the unwanted phase separation. 

Experiments

n↑

n↓

δn
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(1)  Is it possible to stabilize the FFLO state against pairing fluctuations by introducing an optical lattice ?

(2)  Can the FFLO state be stabilized against the phase separation (BCS + Normal) in an optical lattice ?

FFLO state

vs.

Phase separation (BCS + Normal)

⇒ +

BCS-type Cooper pairs polarized normal gas
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‣ Superfluid order parameter

Fulde-Ferrell-type order parameter

 Pauli matrix in Nambu spaceτi :

Nozières and Schmitt-Rink (NSR) Theory

‣ Hartree energy ・effective chemical potential

‣ Nambu field

Hamiltonian (3D attractive Hubbard model)

Fluctuations in the Cooper channel HFLMean-field Hamiltonian HFL

⇒

(nearest-neighbor hopping)

‣ Single-particle energy
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ΩFL

CHAPTER 2. STRONG COUPLING FORMALISM FOR ATTRACTIVELY
INTERACTING FERMI SYSTEMS

+ΩNSR = !U

τ τj

+ +
^

Figure 2.5: NSR corrections ΩNSR to the thermodynamic potential Ω in the super-
fluid state below Tc. Π̂i j is the (i j) component of the particle-particle correlation
function, in Eq.(2.51).

2.2.2 Strong Coupling Corrections To The Thermodynamic Po-
tential In The Superfluid Phase

Extending the discussion in Sec.2.1 to the superfluid state, we evaluate fluctuation
corrections coming from H′I in Eq.(2.44) to the thermodynamic potential Ω. The
resulting superfluid thermodynamic potential Ω within the framework of the NSR
theory is given by the sum Ω = ΩMF + ΩNSR of the mean-field part ΩMF and
the fluctuation part ΩNSR. Here, the mean-field part has the same form as the
thermodynamic potential in the ordinary BCS theory, given by

ΩMF = −T ln
[
treHMF/T

]

=
∑

p

[
ξp − Ep +

∆2

2εp
+ 2T ln

[
1 − nF

(
Ep

)]]
− m∆2

4πas
, (2.46)

where Ep =
√
ξ2

p + ∆
2 represents the Bogoliubov single-particle excitations. The

fluctuation correctionΩNSR is diagrammatically described as Fig.2.5, which gives,

ΩNSR = −
T
2

∑

q,iνn

tr ln Γ̂ (q, iνn) , (2.47)

where

Γ̂ (q, iνn) = −U
[
1 + UΠ̂ (q, iνn)

]−1

=

(
Γ−+ (q, iνn) Γ−− (q, iνn)
Γ++ (q, iνn) Γ+− (q, iνn)

)
. (2.48)

is the 2 × 2 particle-particle scattering matrix in the Nambu formalism, with the
2 × 2 matrix pair correlation function having the form,

Π̂ (q, iνn) =
(
Π−+ (q, iνn) Π−− (q, iνn)
Π++ (q, iνn) Π+− (q, iνn)

)
,

Πi j(q, iνn) = T
∑

p,iωn

tr
[
τiĜ0(p+ q, iωn + iνn)τ jĜ0(p, iωn)

]
. (2.49)

In Eq.(2.49) Ĝ0(p, iωn) is the 2 × 2 matrix single particle Green’s function in the
BCS theory, given by [88]

Ĝ0(p, iωn) =
1

iωn − ξpτ3 + ∆τ1
. (2.50)

28

=

−U

Π̂
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Filling  dependencen
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(a)

(b)

弱 強
Fermi面の異方性

図 5.6. Fermi 面の (a) フィリング n と (b) 次最近接サイトへの飛び移り積分 t′ に対する依存性。
n(t′)が大きく (小さく)なるほど、Fermi面の異方性が強くなる。

流動とスピン偏極した常流動 Fermi原子気体に分離した状態)との競合を考慮する必要が
ある [138–140]。実際、これまでのスピンインバランス冷却 Fermi原子気体における実験
ではこの相分離状態のみが観測されており [147–151]、この系における FFLO状態の観測
の大きな妨げになっている。
図 5.7に、HNSR理論で計算された光格子中のスピンインバランス冷却 Fermi原子気
体における常流動相から超流動相への 2次相転移線、および、常流動相から相分離相への
1次相転移線を示す。(これらの相転移線の決定方法は付録 G.2.3にまとめてある。)フィ
リング n = 0.3の場合、図 5.7(a)に示すように、FFLO状態への 2次相転移が起こる前
に相分離状態への 1次相転移が起こる。この場合、FFLO状態は対形成揺らぎに対し安定
化するものの、相分離状態との競合に敗れてしまうため、FFLO状態を実現することはで
きない。しかし、フィリングが大きくなり Fermi面の異方性が強くなると、対形成揺らぎ
が抑制され FFLO状態が安定化しやすくなるため、図 5.7(b)に示すように、FFLO状態
への 2次相転移線がより高い分極率の領域まで張り出してくる。この n = 0.305の場合、
0.28 ! T/T 0

c ! 0.55の領域では相分離状態への 1次相転移が起こるが、T/T 0
c ! 0.28の

領域では相分離が起こる前に FFLO状態への 2次相転移が起こる。
さらにフィリングが大きくなると、図 5.7(c)に示すように、FFLO状態への 2次転移

Anisotropy of the Fermi surface

FFLO State in a Lattice System (Fermi Surface shape)

weak strong
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Taira Kawamura and Yoji Ohashi, Phys. Rev. A 106, 033320 (2022).

‣ We theoretically explored a promising route to achieve the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in a spin-imbalanced  
 ultracold Fermi gas. 

Future work

‣  Fluctuations in other channels

‣ We have found that the anisotropy of the Fermi surface is crucial to the realization of the FFLO state. As the Fermi surface deviates  
  from spherical with increasing the filling fraction, the FFLO pairing fluctuations become weak, which promotes the stabilization  
  of the FFLO-type long-range order. 

‣  Crystalline (multiple-Q) FFLO state 
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B Fixed chemical potential (gas system)

If we consider the situation where the chemical potentials are kept fixed, the relevant thermodynamic potential

that should be minimized is the grand thermodynamic potential,

ΩBCS
MF (∆0;µ↑, µ↓) =

∑

p

[
ξp,↓ − E−

p − T
[
ln
(
1 + e−βE+

p
)
+ ln

(
1 + e−βE−

p
)]

+
∆2

0

U

]
(88)

ΩN
MF(µ↑, µ↓) = −T

∑

σ=↑,↓

∑

p

ln
(
1 + e−βξp,σ

)
, (89)

Ωmix
MF(∆0, x;µ↑, µ↓) = xΩBCS

MF + (1− x)ΩN
MF (90)

where ξp,σ = p2/(2m)− µ and E±
p =

√(
ξsp
)2

+∆2 ∓ δµ. The stationary condition of Ωmix
MF with respect to ∆0

and x reads the gap equation and the mechanical equilibrium condition,

∂Ωmix
MF

∂∆0
= 0 ⇔ ∆0 = U

∑

k

1

2Ẽk

[
1− f(Ẽ+

k )− f(Ẽ−
k )
]
,

∂Ωmix
MF

∂x
= 0 ⇔ ΩBCS

MF = ΩN
MF. (91)

Phase diagram [µ = εF, (aspF)−1 = −1.5]
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The 1st-order transition line (green dotted line) corresponds to the Chandrasekhar-Clogston limit. The super-

fluid fraction jumps from x = 0 to x = 1 at the CC limit, which means that there is no phase separation.
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• n = n↑ + n↓ = 0.5, U/(6t) = 0.4

• If we only need the 1st-order phase transition line between normal and PS, we can set x = 0 before solving

the coupled equations in Eqs. (31)-(36). Then, the number equation (31) reduces the number equation

in the normal phase,

nMF
σ = nMF

σ,N =
∑

k

f(ξ̃k,σ). (37)

Thus, we can obtain µ̃σ by solving the number equations in the normal phase, and obtain ∆0 and Pc (hc)

by solving the gap equation (35) and the mechanical equilibrium condition in Eq. (36). We note that

this is an equivalent procedure to the previous work [Kashimura, Watanabe and Ohashi, PRA 86, 043622

(2012)].

6

n = n↑ + n↓ = 0.5

U/(6t) = 0.4

Chemical potential is fixed Total particle number is fixed

Phase diagram
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In isotropic systems, the FFLO-type non-uniform superfluid state is unstable against pairing fluctuations at nonzero temperature 

even in a 3D system. -  H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998) 

-  Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002)
-  J. Wang et. al., Phys. Rev. B 97, 134513 (2018)
-  P. Zdybel et. al., Phys. Rev. A 104, 063317 (2021) 

⋮

Large fluctuations caused by an infinite degeneracy with respect to the direction of the FFLO  vector

destroy the FFLO-type long-range order.

Q

Q

↑ ↑

gas system 

(continuous rotational symmetry)

(cf.) Hohenberg-Mermin-Wagner theorem

2D XY model

O(2) symmetry

continuous symmetry

⋯ ⋯ ⋯ ⋯ 2D Ising model

 symmetryZ2

discrete symmetry

Long-range order can be stabilized!
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The FFLO state has not been observed experimentally in a 2D and 3D Fermi gas.

Theory (Mean-field approximation)
M. M. Parish et. al., Nature Physics 3, 124 (2007)
G. C. Strinati et. al., Phys. Rep. 738, 1 (2018)

⋮
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In isotropic systems, the FFLO-type non-uniform superfluid state is unstable against pairing fluctuations at nonzero temperature 

even in a 3D system.

Q

↑ ↑

-  H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998) 
-  Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002)
-  J. Wang et. al., Phys. Rev. B 97, 134513 (2018)
-  P. Zdybel et. al., Phys. Rev. A 104, 063317 (2021) 

⋮
Q
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the continuous rotational symmetry

(cf.) Hohenberg-Mermin-Wagner theorem

2D XY model
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continuous symmetry
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Atom

Laser

Periodic potential made by optical interference
http://www.kozuma.phys.titech.ac.jp/
research_category/entry7.html

infinite degeneracy finite degeneracy



/27Landau-Peierls instability

QCD (chiral condensate)

GL expansion for the (3+1)-dimensional NJL model in the chiral limit [Nickel (2009)]

Dual Chiral Density Wave Fulde-Ferrell type

real kink crystal Larkin-Ovchinikov type

T

μ

chiral restoration

⟨ϕ⟩ = 0

inhomogeneous chiral condensed

,  ⟨ϕ⟩ = 0 q ≠ 0

chiral condensed

,  ⟨ϕ⟩ = 0 q = 0

2nd

2nd/crossover

DCDW: 1st,   RKC: 2nd

. . . . . .

Introduction Basic features of 1D modulations Beyond 1D modulations Summary

.. Typical shape of inhomogeneous chiral condensates

Flavor-SU(2) case a general chiral order parameter: φ(z)≡〈ψψ〉(x)+i〈ψiγ5τ3ψ〉(x)

! FF-type (φFF=∆eiqz) ground state: ʲNakano-Tatsumi(2005); akin to Dautry-Nyman(1979)ʳ

〈ψψ〉(z) = ∆ cos(qz), 〈ψiγ5τ3ψ〉(z) = ∆ sin(qz)

! LO-type (φLO=∆(z)) ground state: ʲNickel(2009); cf. Thies(2006)ʳ

〈ψψ〉(z) = ∆
√
ν sn(∆z|ν)

(∆: amplitude, q: wavenumber, ν: elliptic modulus)

" Dual chiral density waves (DCDW)

Z

(chiral spirals in 3+1D systems)

" Real kink crystals (RKC)

(periodic domain walls in 3+1D systems)

J-PARC hadron physics in 2016 (@IQBRC, Mar. 2-4, 2016) On the possibility of multidimensional structure / T.-G. Lee

. . . . . .
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typically involve highly anisotropicmaterials—made up either ofweakly
coupled two-dimensional (2D)planes or 1Dwires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.
Details of our experimental procedures are given in the Methods

and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formedwith a 2D optical lattice24. The
lattice potential is given byV5V0cos

2(kx)1V0cos
2(ky),with k5 2p/l

and V05 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to bemet for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF5N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
andvz andvH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF. t is equivalent
to specifying that the Fermi surface is 1D, and the condition T. t
makes the inter-tube coupling incoherent.All conditions arewell satisfied
in our experiment: the tube aspect ratio vH/vz5 1,000 is larger than
N1< 120 for the central tube; and t/kB< 17nK is much smaller than
both eF/kB< 1.2mK and T< 175nK.
We tune an external magnetic field to the Bardeen–Cooper–

Schrieffer (BCS) side (890G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(seeMethods).Assuminghydrostatic equilibrium, the 1Dspatial density
profiles n1,2(z) can be expressed in terms of m5m02V(z), and h5h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N5N11N2 and polarization P5 (N12N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z)2n2(z)5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z)5 0, as shown in Fig. 1b.
Figure 2 shows axial density profiles of state j1æ, state j2æ, and their

differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)

1/2az, where N0 is the total number of
particles in the central tube and az5 (B/mvz)

K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasingP (50.055), the phase boundarymoves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and theminority state ( | 2æ) axial density (blue circles) compared with a 175nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes,N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P< 0.136 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P< 0.17.
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Spin-imbalance in a one-dimensional Fermi gas
Yean-an Liao1*, Ann Sophie C. Rittner1*, Tobias Paprotta1, Wenhui Li1,3, Guthrie B. Partridge1{, Randall G. Hulet1, Stefan K. Baur2

& Erich J. Mueller2

Superconductivity andmagnetismgenerally donot coexist. Changing
the relative number of up and down spin electrons disrupts the basic
mechanismofsuperconductivity,whereatomsofoppositemomentum
and spin formCooper pairs. Nearly forty years ago Fulde and Ferrell1

and Larkin and Ovchinnikov2 (FFLO) proposed an exotic pairing
mechanism in which magnetism is accommodated by the formation
ofpairswith finitemomentum.Despite intense theoretical andexperi-
mental efforts, however, polarized superconductivity remains largely
elusive3. Unlike the three-dimensional (3D) case, theories predict that
inonedimension(1D)astatewithFFLOcorrelationsoccupiesamajor
part of the phase diagram4–12. Here we report experimental measure-
ments of density profiles of a two-spinmixture of ultracold 6Li atoms
trapped in an array of 1D tubes (a systemanalogous to electrons in 1D
wires). At finite spin imbalance, the system phase separates with an
inverted phase profile, as compared to the 3D case. In 1D, we find a
partially polarized core surroundedbywingswhich, depending on the
degreeof polarization, are composedof either a completely pairedor a
fullypolarizedFermigas.Ourworkpaves thewaytodirectobservation
and characterization of FFLO pairing.
The FFLO states are perhaps the most interesting of a number of

exotic polarized superconducting phases proposed in the past 40 years.
In the original concept of Fulde and Ferrell, Cooper pairs form with
finite centre-of-mass momentum1. Larkin and Ovchinnikov proposed
a related model in which the superconducting order parameter oscil-
lates in space2. These two ideas are closely related, because the oscil-
lating order parameter may be interpreted as an interference pattern
between condensates with opposite centre-of-mass momenta. The
spin density oscillates in the Larkin and Ovchinnikov model, leading
to a build-up of polarization in the nodes of the superconducting order
parameter. Thus, the Larkin and Ovchinnikov state can be considered
a form of microscale phase separation with alternating superfluid and
polarized normal regions. By including more and more momenta,
subsequent theorists were able to evaluate the stability of ever more
complicated spatial structures3.
Previous studies of superfluidity in fermionic atoms show that ultra-

cold atoms form a powerful tool with which to investigate the emer-
gent properties of interacting systems ofmany particles. Although they
are largely analogous to an electronic superconductor, the atomic
systems feature tunable interactions. This extra degree of control has
led to a number of unique experiments and conceptual advances.
Furthermore, the absence of spin relaxation enables us to spin-polarize
the atoms to explore the interplaybetweenmagnetismand superfluidity,
with the potential to observe the FFLO phase. Recent calculations indi-
cate that if a FFLOphase exists in 3D trapped gases, it will occupy a very
small volume in parameter space13,14. Experiments in 3D and in the
strongly interacting limit show that the gas phase separates with an
unpolarized superfluid core surrounded by a polarized shell15–19, with
no evidence for the FFLOphase.Here, we study a polarized Fermi gas in
1D, forwhich theorypredicts that a large fractionof thephasediagram is
occupied by an FFLO-like phase (see Fig. 1a)4–12. In this 1D setting, the
physics should be closest to that described by Larkin and Ovchinnikov,

where an oscillating superfluid order parameter coexists with a spin-
density wave. Owing to fluctuations, the order will be algebraic rather
than long-range. The increased stability of FFLO-like phases in 1D can
beunderstood as a ‘nesting’ effect, inwhich a singlewavevector connects
all points on the Fermi surface, allowing all atoms on the Fermi surface
to participate in finite momentum pairing, whereas in 3D, only a small
fraction of these atoms are able to do so. Similar enhancements are
predicted for systems of lattice fermions and quasi-1D geometries10,20.
Our work complements studies of astrophysical objects3 and solid-

state systems. Like our current experiment, the solid-state experiments
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Figure 1 | Theoretical T5 0 phase diagram (adapted from ref. 6).

a, Schematicwith m~
1
2
(m1zm2) versus h~

1
2
(m1{m2) , showing three phases:

fully paired (green), fully polarized (blue), and partially polarized (yellow),
which is predicted to be FFLO. In a trap,m decreases from the centre to the edge,
while h is constant throughout the tube. The vertical arrows show two possible
paths from the trap centre to edge: The partially polarized centre is surrounded
either by a fully paired superfluid phase at low h or by a fully polarized phase at
high h. At a critical value of h, corresponding to a polarization Pc, the whole
cloud is partially polarized. b, Phase diagram of the 1D trapped gas with
infinitely strong point interactions. The scaled axial radius is defined in the Fig.
3 caption. The red line corresponds to the scaled radius of the density
difference, and the blue line is the scaled radius of state | 2æ.
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1D spin-imbalanced Fermi gas Y. Liao, et. al., Nature (London) 467, 567 (2010). 

Theory: exactly solvable Gaudin–Yang model

‣  The density profile of population imbalanced 1D Fermi gas was found to qualitatively agree with a theoretical prediction, exhibiting the FFLO state.

‣  In a 1D system, there is no infinite degeneracy associated with the Cooper pair’s momentum.

or
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β′￼′￼− (BEDT − TTF)2SF5CH2CF2SO3

- Beyer et.al., PRL 109, 027003 (2012)
- Koutroulakis et.al., PRL 116, 067003 (2016)

CeCu2Si2 - Kitagawa et.al., PRL 121, 157004 (2018)

κ − (BEDT − TTF)2Cu(NCS)2

- Wright et.al., PRL 107, 087002 (2011)
- Mayaffre et.al., Nat. Phys. 10, 928 (2014)

- Kumagi et.al., PRL 97, 227002 (2006)
- Bianchi et.al., PRL 89, 137002 (2002)

KFe2As2 - Kumagi et.al., PRL 119, 217002 (2017)

FeSe - Ok et.al., PRB 101, 224509 (2020)
- Kasahara et.al., PRL 124, 107001 (2020)

Figure 2(c) depicts the T dependence of Hirr (filled blue
circles) along with a color plot illustrating the magnitude of
ρðHÞ=ρð35TÞ. Above T ∼ 1 K, the in-plane upper critical
field Hab

c2 is expected to be located well above Hirr,
although no feature is observed in the measured resistivity.
On the other hand, below ∼1 K, where the sharp resistive
transition is observed,Hab

c2 is expected to be close toHirr. In
Fig. 2(c), we also plot the field at which the resistivity
becomes 90% of the normal state value (red crosses). The
overall behavior of this feature is essentially the same as
that of Hirr, demonstrating that Hab

c2 exhibits an anomalous
upturn below ∼2 K, suggesting the formation of a high-
field superconducting phase.
The presence of an anomalous high-field phase is con-

firmed by thermal-conductivity measurements. Figure 3(a)
shows theH dependence of κ up to 33 T. Above∼2 K, κðHÞ
first decreases with H and then increases gradually after
attaining a kink-like minimum at μ0Hk ¼ 20 and 20.5 T at
4.35 and 2.6 K, respectively, which are close to Hirr. The
initial reduction of κðHÞ is caused by the suppression of the
quasiparticle mean free path due to introduction of vortices
[30,47–50]. Below T ∼ 1 K, κðHÞ increases withH without
showing an initial reduction. Figure 3(b) displays κðHÞ
below 2.0 K and above 16 T.
The most remarkable feature of the low-T data is that

κðHÞ exhibits a discontinuous downward jump at μ0H$ ≈
24 T (black arrows). At H$, κðHÞ shows a large change
of the field slope and increases steeply with H above H$.

It should be stressed that H$ is deep inside the super-
conducting state at low temperature, as evidenced by the
fact that H$ is well below Hirr. Figure 4 displays the T
dependence ofHirr andH$. As the temperature is increased,
H$ decreases gradually and coincides with Hirr at about
2 K. Note that the jump of κðHÞ, which is intimately related
to a jump in entropy, is a strong indication of a first-order
phase transition, as reported for CeCoIn5 and URu2Si2
[49–52]. No discernible anomaly of κðHÞ is observed
above about 2 K, indicating that the first-order transition
occurs only within the superconducting state. Thus, our
κðHÞ measurements provide strong evidence for a distinct
high-field superconducting phase, which is separated by a
first-order phase transition from the superconducting low-
field phase.
We point out that the high-field superconducting phase is

not an antiferromagnetic (AFM) ordered phase. When such
order occurs, the Fermi surface is folded into the (reduced)
AFM Brillouin zone, and, as a result, a partial energy gap
opens over portions of the Fermi surface. However,
quantum-oscillation measurements show no evidence of
such a band folding [24]. Moreover, given its very small
Fermi surfaces, Hc2 in FeSe is expected to be largely
suppressed by AFM ordering due to a concomitant reduc-
tion in the charge-carrier number.
We associate the high-field phase with an FFLO phase

for the following reasons. First, the H-T phase diagram
shown in Fig. 4, including the steep enhancement
of Hab

c2 at a low temperature and the first-order phase
transition at a largely T independent H$ bears a striking
resemblance to that expected for the FFLO transition [3,5].

FIG. 3. (a) Magnetic-field dependence of the thermal conduc-
tivity in FeSe for Hkab. The inset shows a schematic illustration
of the experimental setup of the thermal-conductivity measure-
ments. Orange arrows indicate the magnetic field Hk at which a
kink-like minimum of κðHÞ appears. (b) The same data below
T ¼ 2 K plotted for the high-field regime above μ0H ¼ 16 T. A
discontinuous downward jump at μ0H ¼ 24 T appears inside the
superconducting state as indicated by the black arrows. Green
arrows indicate the field Hp determined by our resistivity
measurements.

FIG. 4. High-field phase diagram of FeSe for Hkab plane.
Blue circles and green crosses show Hirr and Hp determined
by resistivity measurements. Orange and yellow circles show Hk
and H$ determined by thermal-conductivity measurements,
respectively. Above the first-order phase transition field H$,
a distinct field-induced superconducting phase emerges at low
temperatures.
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‣  Organic superconductor
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CeCoIn5
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Conditions for realizing the FFLO state

(1) Pauli pair-breaking effect > orbital pair-breaking effect

(2) ultra-clean system
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Phase separation (BCS superfluid + Normal)

Equilibrium conditions

- thermal equilibrium TSF = TN

- chemical equilibrium μSF,σ = μN,σ

- mechanical equilibrium PSF = PN

We neglect the interface energy between 

the normal and superfluid components

superfluid fraction x
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• n = n↑ + n↓ = 0.5, U/(6t) = 0.4

• If we only need the 1st-order phase transition line between normal and PS, we can set x = 0 before solving

the coupled equations in Eqs. (31)-(36). Then, the number equation (31) reduces the number equation

in the normal phase,

nMF
σ = nMF

σ,N =
∑

k

f(ξ̃k,σ). (37)

Thus, we can obtain µ̃σ by solving the number equations in the normal phase, and obtain ∆0 and Pc (hc)

by solving the gap equation (35) and the mechanical equilibrium condition in Eq. (36). We note that

this is an equivalent procedure to the previous work [Kashimura, Watanabe and Ohashi, PRA 86, 043622

(2012)].

6

Fmix
MF

(BCS + N)

We need to minimize   with respect to , , , and Fmix
MF μ↑ μ↓ Δ0 x

1.2.2 Phase separation (BCS+N)

We then take into account the possibility of an inhomogeneous mixed phase where a fraction x of the space

is superfluid (BCS) phase, while the remaining 1 − x of the space is in the normal phase. The Helmholtz free

energy of this mixed phase is given by

Fmix
MF = xFBCS

MF + (1− x)FN
MF

= x
[
ΩBCS
MF + µ↑n

MF
↑,BCS + µ↓n

MF
↓,BCS

]
+
[
1− x

][
ΩN
MF + µ↑n

MF
↑,N + µ↓n

MF
↓,N
]

= xΩBCS
MF + [1− x]ΩN

MF + µ↑n
MF
↑ + µ↓n

MF
↓ (28)

where

ΩBCS
MF =

∑

k

[
ξ̃k,↓ − Ẽ−

k − T
[
ln
(
1 + e−βẼ+

k
)
+ ln

(
1 + e−βẼ−

k
)]

+
∆2

0

U
+ UnMF

↑ nMF
↓

]
, (29)

ΩN
MF = −T

∑

σ=↑,↓

∑

k

ln
(
1 + e−βξ̃k,σ

)
+ UnMF

↑ nMF
↓ . (30)

We here use the chemical equilibrium condition µσ,BCS = µσ,N and nMF
σ = xnMF

σ,BCS + [1− x]nMF
σ,N. We note that

in Eq. (28), we neglect the interface energy between the normal and superfluid components of the mixed phase,

which can be ignored in the thermodynamic limit.

The Helmholtz free energy Fmix
MF in Eq. (28) depends on µ↑, µ↓, ∆0, and x. We need to minimize Fmix

MF with

respect to these parameters to determine the ground state. The stationary conditions with respect to µ↑,↓ reads

the number equations,

∂Fmix
MF

∂µσ
= 0 ⇔ nMF

↑ = x
∂ΩBCS

MF

∂µσ
+ [1− x]

∂ΩN
MF

∂µσ
= xnMF

↑,BCS + [1− x]nMF
↑,N (31)

with

nMF
↑,BCS =

∑

k

[
ũ2kf(Ẽ

+
k ) + ṽ2kf(−Ẽ−

k )
]
, (32)

nMF
↓,BCS =

∑

k

[
ũ2kf(Ẽ

−
k ) + ṽ2kf(−Ẽ+

k )
]
, (33)

nMF
σ,N =

∑

k

f(ξ̃k,σ). (34)

The stationary condition with respect to ∆0 gives the gap equation in Eq. (19);

∂Fmix
MF

∂∆0
= x

∂ΩBCS
MF

∂∆0
= 0 ⇔ ∂ΩBCS

MF

∂∆0
= 0 ⇔ ∆0 = U

∑

k

1

2Ẽk

[
1− f(Ẽ+

k )− f(Ẽ−
k )
]
. (35)

The stationary condition with respect to x reads the mechanical equilibrium condition (P S = PN),

0 =
∂Fmix

MF

∂x
= ΩBCS

MF − ΩN
MF. (36)

5

⇔ mechanical equilibrium conditionSF

- Hartree density equations

- gap equation

with the coherence factors

ũ2k,Q = 1− ṽ2k,Q =
1

2

[
1 +

ξ̃sk,Q

Ẽk,Q

]
, ũk,Qṽk,Q =

∆0

2Ẽk,Q

. (14)

The Bogoliubov excitation energy is given by

Ẽ±
k,Q = Ẽk,Q ± ξ̃ak,Q =

√(
ξ̃sk,Q

)2
+∆2

0 ± ξ̃ak,Q, (15)

with

ξ̃s/ak,Q =
1

2

[
ξ̃k+Q/2,↑ ± ξ̃−k+Q/2,↓

]
=

1

2

[
ξk+Q/2,↑ ± ξ−k+Q/2,↓

]
∓ U

2

[
nMF
↑ ± nMF

↓
]
. (16)

It is now possible to derive a set of coupled self-consistent equations with respect to order parameters nMF
σ and

∆0. They are given by

nMF
↑ =

∑

k

〈ĉ†k,↑ĉk,↑〉 =
∑

k

[
ũ2k,Q 〈γ̂†k,+γ̂k,+〉+ ṽ2k,Q 〈γ̂†k,−γ̂k,−〉

]
=
∑

k

[
ũ2k,Qf(Ẽ+

k,Q) + ṽ2k,Qf(−Ẽ−
k,Q)

]
, (17)

nMF
↓ =

∑

k

[
ũ2k,Qf(Ẽ−

k,Q) + ṽ2k,Qf(−Ẽ+
k,Q)

]
, (18)

∆0 = U
∑

k

1

2Ẽk,Q

[
1− f(Ẽ+

k,Q)− f(Ẽ−
k,Q)

]
. (19)

1.2 Phase diagram (fixed particle number condition)

In this study, with experiments in ultracold atomic systems in mind, we consider the following situation:

• We fix the total filling number n = nMF
↑ + nMF

↓ .

• We tune the polarization P = [nMF
↑ − nMF

↓ ]/n (> 0), which effectively introduces the “Zeeman field”

h = [µ↑ − µ↓]/2 to the system.

When we fix total filling number n and polarization P , which is equivalent to fixing nMF
↑ and nMF

↓ , the relevant

thermodynamic potential that should be minimized is the Helmholtz free energy,

FMF = ΩMF + µ↑n
MF
↑ + µ↓n

MF
↓ , (20)

with the grand thermodynamic potential ΩMF. ΩMF can be evaluated from the partition function for the

grand-canonical ensemble, which can be calculated from the diagonalized Hamiltonian in Eq. (12),

Z = Tre−βĤMF = e−βC
∏

k

[
1 + e−βẼ+

k,Q
][
1 + e−βẼ−

k,Q
]
. (21)

Then, ΩMF can be obtained via ΩMF = −T lnZ and reads

ΩFF
MF =

∑

k

[
ξ̃−k+Q/2,↓ − Ẽ−

k,Q − T
[
ln
(
1 + e−βẼ+

k,Q
)
+ ln

(
1 + e−βẼ−

k,Q
)]

+ UnMF
↑ nMF

↓ +
∆2

0

U

]
. (22)

3

- mechanical equilibrium condition ΩSF
MF = ΩN

MF
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(a)

(b)

弱 強
Fermi面の異方性

図 5.6. Fermi 面の (a) フィリング n と (b) 次最近接サイトへの飛び移り積分 t′ に対する依存性。
n(t′)が大きく (小さく)なるほど、Fermi面の異方性が強くなる。

流動とスピン偏極した常流動 Fermi原子気体に分離した状態)との競合を考慮する必要が
ある [138–140]。実際、これまでのスピンインバランス冷却 Fermi原子気体における実験
ではこの相分離状態のみが観測されており [147–151]、この系における FFLO状態の観測
の大きな妨げになっている。
図 5.7に、HNSR理論で計算された光格子中のスピンインバランス冷却 Fermi原子気
体における常流動相から超流動相への 2次相転移線、および、常流動相から相分離相への
1次相転移線を示す。(これらの相転移線の決定方法は付録 G.2.3にまとめてある。)フィ
リング n = 0.3の場合、図 5.7(a)に示すように、FFLO状態への 2次相転移が起こる前
に相分離状態への 1次相転移が起こる。この場合、FFLO状態は対形成揺らぎに対し安定
化するものの、相分離状態との競合に敗れてしまうため、FFLO状態を実現することはで
きない。しかし、フィリングが大きくなり Fermi面の異方性が強くなると、対形成揺らぎ
が抑制され FFLO状態が安定化しやすくなるため、図 5.7(b)に示すように、FFLO状態
への 2次相転移線がより高い分極率の領域まで張り出してくる。この n = 0.305の場合、
0.28 ! T/T 0

c ! 0.55の領域では相分離状態への 1次相転移が起こるが、T/T 0
c ! 0.28の

領域では相分離が起こる前に FFLO状態への 2次相転移が起こる。
さらにフィリングが大きくなると、図 5.7(c)に示すように、FFLO状態への 2次転移

t′￼= 0
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Anisotropy of the Fermi surface

FFLO State in a Lattice System (Fermi Surface shape)


